The ghost of financing gap: testing the growth model used in the international financial institutions

William Easterly *

Room MC3-337, World Bank, 1818 H St. NW, Washington, DC 20433, USA
Received 1 November 1997; accepted 1 May 1999

Abstract

The Harrod–Domar growth model supposedly died long ago. Still today, economists in the international financial institutions (IFIs) apply the Harrod–Domar model to calculate short-run investment requirements for a target growth rate. They then calculate a "financing gap" between the required investment and available resources and often fill the "financing gap" with foreign aid. The financing gap model has two simple predictions: (1) aid will go into investment one for one, and (2) there will be a fixed linear relationship between growth and investment in the short run. The data soundly reject these two predictions of the financing gap model. © 1999 Elsevier Science B.V. All rights reserved.

JEL classification: E1; E22; O1; O11; O21; O4; O41

Keywords: Economic growth; Growth models; Investment; Economic development; Foreign aid

1. Introduction

International financial institutions (IFIs) like the World Bank and International Monetary Fund (IMF) today use a growth model that long ago died out of the academic literature. This paper performs the unusual task of examining this "ghost" model in the light of theory and evidence.

* Tel.: +1-202-473-8965; fax: +1-202-522-3518; E-mail: weasterly@worldbank.org

0304-3878/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0304-3878(99)00047-4
It is not common to test models that have been out of favor for decades in the literature. However, I put forward that testing models widely used in practice is as important an enterprise as testing models that are at the frontier of economics. While the latter advances the state of knowledge, the former tests the application of that knowledge in making economic policies.

The growth model used in the IFIs today, despite frequently expressed misgivings and caveats, is the Harrod (1939)–Domar (1946) model as further developed by Chenery and Strout (1966) as the two-gap model. The model has two important features: (A) investment requirements to achieve a given growth rate are proportional to the growth rate by a constant known as the incremental capital output ratio (ICOR). (B) Aid requirements are given by the “financing gap” between the investment requirements and the financing available from the sum of private financing and domestic saving. I will call the Harrod–Domar–Chenery two-gap model the “financing gap model” for short, because its most important use is to determine financing shortfalls. (A) and (B) imply the following testable propositions: (1) aid will go into investment one for one, and (2) there will be a fixed linear relationship between growth and investment in the short run. The constant of proportionality is one over the ICOR. Both predictions are about the short-run evolution of aid, investment, and growth; nothing in this paper addresses the long-run relationship between growth and investment or the long-run effectiveness of aid.

I will first document the widespread use of the financing gap model in international organizations. Then, I will review the literature on the financing gap model. Next, I will examine the consistency of the financing gap model with different growth theories. Then, I will test the model against the data. Finally, I will appeal to theory to speculate why the model has lasted so long despite all the evidence against it.

2. The financing gap model in the 1990s

Although it died in the academic literature some time ago, the ghost of the financing gap model lives on today in the IFIs. Over 90% of country desk economists at the World Bank, for example, use some variant of the financing gap model today to make growth and financing gap projections.¹ According to the

¹The model is called the revised minimum standard model (RMSM). The estimate is by Jos Verbeek, the World Bank’s RMSM coordinator, from a survey. See also Ventura (1996) documenting widespread usage. The RMSM has evolved over time. Khan et al. (1990) suggested reconciling the models of the IMF and World Bank by including monetary accounts. This suggestion was followed in the early 1990s when a team of economists (of which I was one, I must confess) added fiscal and monetary accounts to the RMSM, which was then renamed RMSM-X.
Spring 1995 reference guide to the standard World Bank model, “the ICOR and prior investment determine GDP.” 2 Country economists make assumptions about ICORs and national saving and calculate the financing gap corresponding to a target growth rate. World Bank staff present the result of this calculation at meetings where aid donors agree upon aid amounts for a specific country. The donors and multilaterals also apply analytical and political judgment to determine the aid given, of course, but the number produced by the financing gap model influences the outcome.

To start off with some country examples, World Bank economists programmed the Ugandan economy in 1996 to grow rapidly (at the common growth target 7%). With little savings and an ICOR of 3 implying high investment requirements, the World Bank’s public report presented to the donor community argued for high aid because anything less “could be harmful for medium-term growth in Uganda, which requires external inflows” 3 The “medium term” in this argument was 2–6 years as indicated in the projection tables. A World Bank report in 1993 argued that Guyana “will continue to need substantial levels of foreign capital inflows . . . to provide sufficient resources to sustain economic growth.” 4 A 1993 World Bank report on Lithuania said that “large amounts of external assistance will be required” in order to “provide the resources for critical investments” to stem the output decline. 5 A 1998 report on Lithuania stated explicitly that it was using the financing gap model to perform a “consistency and feasibility check” of the growth target with “the country’s access to external financing”. 6 A World Bank (1989) report noted that “India’s low per capita income means its domestic resources are limited relative to its investment needs. Increasing levels of concessional assistance will ensure India’s rising purchases of capital goods.” The World Bank (1995b) echoed that “investment in the economy is still well below the levels needed for India to grow at rates comparable to high performing Asian economies”; support for investment “should guide the deployment of available assistance”. On Zambia, “a useful (if simplistic) tool for comparing growth and investment scenarios across countries is an ICOR.” 7 On Yemen, “the medium term growth targets will require a steady increase in the investment/GDP ratio from about 13.7% in 1996 to about 20% by the year 2000 on the basis of an ICOR of about 4.2 over the 5-year period 1996–2000.” 8 On Argentina, “a key prerequisite for reaching a sustainable growth rate of 7% is a fairly quick

6 World Bank (1995b).
8 World Bank (1996b).
acceleration in investment rates.''

On Nicaragua, the World Bank (1994a) said the growth "scenario continues to depend on a large influx of aid to finance a resource gap." In Laos, the World Bank (1994b) noted that "to achieve this growth path... Domestic investment is projected to increase... These projections indicate that external financing requirements will increase."

This methodology is so widespread across country desks that those who do not use it feel the need to apologize. The Bank’s 1996 report on Russia warns the reader that their projections are "not an estimate of investment requirements based either upon detailed analysis of needs or knowledge of the appropriate capital–output coefficients." 10

The World Bank is not alone; virtually all international institutions addressing the needs of poor countries stress the short-run necessity of both investment and aid for growth. The IMF today trains developing country officials to project investment requirements as the "target growth rate times the ICOR". 11 The IMF also expresses confidence in a short-run investment–growth link. "Africa’s economic performance is expected to improve in 1992–1993", but the improvement in these 2 years hinges on — among other things — "the increase in investment that is needed to promote economic growth" (IMF, 1992, p. 18). In a different region, the IMF in 1996 told the ex-Communist countries in Europe that "raising investment rates to 30% of GDP" would "double projected growth rates". 12

The Inter-American Development Bank (IDB, 1995) worried about "the challenge of sustaining the level of investment necessary for continued output growth." 13 The following year’s IDB report suggests they had a short-run link in mind. Things looked better, the IDB 1996 noted, because an investment recovery in the 1990s led in the short-run to "the improved growth performance during the 1990s". 14

The European Bank for Reconstruction and Development (EBRD, 1995) announced it was using the "Harrod–Domar growth equation" to project investment requirements. This equation warned the ex-Communist countries that "investment finance of the order of 20% or more of GDP will be required" to reach "growth rates of 5%" (an ICOR of 4). 15 They noted that "conditional official assistance... contributes to cover the gap between domestic savings and investment." 16

10 World Bank (1996e), p. 79.
11 IMF (1996a), pp. 228 and 239.
16 EBRD (1995), p. 75. The chief economist of the EBRD, Nicholas Stern, read an earlier version of this paper. He clarified in correspondence to me that the EBRD does not lend on the basis of the financing gap model.
The International Labor Organization (ILO, 1996) reviewed the poor growth performance of LDCs over 1986–1993. It related this to “the failure of investment rates to rise, since this is an essential condition for raising growth rates.”

For a bilateral example, the Swedish International Development Cooperation Agency commissioned a study of Vietnam (Andersen, 1996) that used the financing gap methodology. Andersen (1996) said that to “support the targeted growth of 9–10% a year for the remaining years of this century, investments would need to increase from the current level of approximately 20% to around 30%.” This is “using a standard estimate of 3 for the ICOR”. The “capital requirement” for this investment is to be filled in part by “foreign development assistance”.17

3. Literature review on the financing gap model

Ironically, Evsey Domar’s April 1946 article did not discuss long run economic growth, much less poor countries; it discussed the relationship between short-term recessions and investment in the United States. Nevertheless, his prediction that GDP growth will be proportional to the share of investment spending in GDP (which he made assuming high unemployment in the US) proved convenient for economists studying poor countries’ growth. Lewis (1954) justified the use of a constant relationship between growth and investment assuming “surplus labor” in the countryside. Chenery and Strout (1966) gave the definitive statement of the financing gap model in their two-gap model. Aid will “fill the temporary gap between investment ability and saving ability”. The usual ICOR formulation determines investment requirements for a given growth target.18

As the World Bank (1991) noted, “this so-called two-gap model of the domestic saving and foreign exchange constraint to growth guided external aid and lending agencies in judging the extra resources that developing countries would need to finance imports and investment.” Since most aid advocates used the financing gap model, we can think of the US$1 trillion in aid from 1960 to 1994 as one of the largest policy experiments ever tried of an economic model.

Economists computerized Chenery’s version of the financing gap model at the World Bank in 1971, where Chenery was now the Chief Economic Adviser to Bank President Robert McNamara. Although Chenery and Strout were vague over

17 Andersen (1996), pp. 6 and 18.
18 Chenery and Strout (1966) called their model the two-gap model. The investment–savings gap was one of the two gaps. The other was the trade gap which ex post is equal to the investment gap, but ex ante might be a constraint in an import-constrained economy with fixed prices. IFI staff still occasionally use the trade gap instead of the investment–saving gap, but this is of little consequence since the two are equal. In any case, the trade gap no longer made sense once the neoclassical resurgence brought with it the assumption of market-clearing prices. I also found no evidence for the trade gap model (results available on request).
what time horizon to use their model, the computerized version of the model had a lag of 1 year from investment to growth.

The run of the financing gap model in the academic literature was closing even as its use spread throughout the World Bank and other IFIs. Although a "gap" segment of the literature still exists today in the three-gap model of Bacha (1990) and Taylor (1994), the spirit of the three-gap model is far from the financing gap model. In the three-gap models, output is an adjustment mechanism in Keynesian fashion and so does not have a stable relationship to investment. As Taylor (1994) (p. 19) puts it, "the three-gap model drops 'the older gap models' maintained hypothesis that output is predetermined by capital accumulation.'"

What became the majority view in the literature, however, was not "gap" related at all. The heyday of the neoclassical critics of development policy came beginning in the 1980s.19 The neoclassical critics thought resource allocation more important than resource quantity. They emphasized "getting prices right". They pointed out growth failures who had high investment but "wrong" prices. The financing gap model had no role for prices in resource allocation and so the neoclassical approach seemed to rule out reliance on the financing gap model.

The defenders of the use of the financing gap model in the IFIs responded that aid and investment were necessary but not sufficient conditions for growth. The idea seemed to be that the financing gap model gave you the financing requirements for the "necessary" investment in the short-run, while IFI-imposed conditions on getting prices right and other policies would give you the "sufficient" conditions for short-run growth.

The IFIs echo this language with phrases like "[there is an] urgent need for investment" (EBRD, 1996, p. 6), "physical capital formation remains a necessary condition for rapid economic growth" (ILO, 1995, p. 89), and "official financing on concessional terms will be necessary, but not sufficient, to improve growth prospects" (IMF, 1993, p. 79). Regardless of the validity of these statements in the long-run, I have shown in Section 2 that the IFIs apply this "necessary condition" to estimate short-run investment and aid requirements.

Another popular way to put this idea is to say that investment must be of sufficient quality as well as of sufficient quantity. IFI economists routinely interpreted the ICOR as a measure of investment quality. Thus, movements in the growth rate were often decomposed into movements in "investment quantity" and movements in "investment quality".

4. The financing gap model in light of growth theory

How does the financing gap model look in light of alternative growth theories? If aid is viewed as permanent income — and there is considerable justification for

19 See the overview by Myint (1987).
viewing it as such given its persistence — then the optimal response of the recipient is to consume aid rather than to invest aid. In an endogenous growth model (like the one below), a lump sum transfer like aid would have no effect on the rate of investment. There is also a moral hazard problem with giving aid on the basis of a ‘‘financing gap’’. Recipient countries will have an incentive to maintain or increase the ‘‘financing gap’’ by low saving (i.e., high consumption) so as to get more aid. Even if the donor puts savings conditions on the aid, the conditions may not be credible if the recipient perceives the donor as soft-hearted. (Donor conditionality has indeed turned out to be ineffective in changing recipient behavior.) All of these theoretical perspectives are inconsistent with the one-to-one aid to investment link postulated in the financing gap model.

As far as the investment to growth link, I will discuss three questions about the investment–growth link in alternative growth models: (1) is the ICOR a measure of investment quality? (2) is there a causal, proportional relationship between investment and growth? (3) Is the ICOR constant during steady state growth and in the transition to steady-state growth? I will give the qualitative conclusions here and leave the algebraic details for an appendix available on request.

In the neoclassical growth model of Solow with labor-augmenting technical change, the ratio of capital to output will be constant in steady state. Both output per worker and capital per worker will increase at the rate of technical progress. The level of output, not the growth rate of output, will be a function of the investment rate in steady state. One can derive a constant ICOR in steady state — it will be given by the ratio of the investment rate to the sum of population growth and the rate of labor-augmenting technical progress. A high ICOR here could reflect a high investment rate and a low population growth rate — both thought to be desirable — not necessarily low efficiency of investment.

The constant ICOR in the Solow steady state does not signify a causal, proportional relationship between investment and growth. An exogenous increase in investment will raise growth temporarily during the transition from one steady state to another. One can show that the measured ICOR during the transition is higher, the higher is the initial level of the investment rate and the lower is the change in the investment rate. A high ICOR during the transition then may simply reflect a small change in the investment rate, not low investment efficiency. The ICOR also will not be constant during the transition, since it is a nonlinear function of the change in investment and the initial investment in each period. In the Solow model, the answer to questions (1) to (3) will be ‘‘no’’.

In the endogenous growth models of recent years, the ICOR also does not fare well. A decrease in the ICOR also does not necessarily imply improved quality of investment. It may mean simply a lesser quantity of capital invested relative to other factors. The endogenous growth models stress a multitude of inputs besides

physical capital, such as human capital, intermediate "new goods", organizational
capital, etc.
For example, suppose that there is a tax imposed on investment in physical
capital, like an import tariff on imported capital goods or a sales tax on domestic
capital goods. The tax increase will lower the ICOR because physical investment
will now play less of a role in growth compared to human capital investment. This
represents not a salutary increase in investment quality but just the opposite — a
loss in efficiency due to a tax-induced suboptimal combination of physical and
human capital investment. (The same story would hold in the Solow model if we
had both human and physical capital in the Solow production function.)
The ICOR is constant in the steady state of the endogenous growth model, as in
the Solow model. However, the constant ICOR reflects the endogenous steady
state response of both growth and investment to the model parameters and to
policies like the tax rate. It does not represent a linear causal relationship between
physical capital and output, because any increase in physical capital with human
capital held constant will run into diminishing returns. The ICOR also would not
remain constant during the transition to a new steady state after such an increase in
physical investment. In a variety of endogenous growth models, the answer to
questions (1) to (3) is "no".
In conclusion, in the short run, there is no theoretical reason in standard
neoclassical and endogenous growth models to expect the ICOR to be a measure
of investment quality, to be the derivative of growth with respect to investment, or
to be constant during transitions.

5. Testing the financing gap model

As far as I know, nobody has done a full-scale test of the financing gap model
with cross-country data. It is easy to understand why. By the time that large-scale
cross-country datasets became available, the model had largely fallen out of favor
in the academic literature. Testing dead models is not an enterprise that is
generally rewarded by the academic profession. Yet, as we have seen, the ghost of
this dead model lives on in the determination of aid requirements and growth
prospects of poor countries. The models that are applied in practice should be
tested against the data just as much as the models that are at the frontier of
knowledge in the literature.

5.1. Aid to investment

When financing gap model users calculated aid requirements as the excess of
required investment over actual saving, their presumption was that aid will go one
for one into investment. Moreover, aid givers talked about conditionality that
would require countries to increase their rate of national saving at the same time.
Table 1
Results of regressing Gross Domestic Investment/GDP on ODA/GDP country by country, 1965–1995

<table>
<thead>
<tr>
<th>Coefficient of investment on ODA</th>
<th>Number of countries</th>
<th>% of sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>88</td>
<td>100</td>
</tr>
<tr>
<td>Positive, significant, and ≥ 1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Positive and significant</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Positive</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Negative</td>
<td>53</td>
<td>60</td>
</tr>
<tr>
<td>Negative and significant</td>
<td>36</td>
<td>41</td>
</tr>
</tbody>
</table>

So, aid combined with conditionality should increase investment by even more than one-to-one. Let us see what actually happened.

We have 88 aid recipient countries on which we have data spanning the period 1965–1995 (Table 1). How many of these countries show a significant and positive effect of foreign aid on investment, with a coefficient greater than or equal to one? The dependent variable here is investment/GDP and the independent variable is Overseas Development Assistance (ODA)/GDP. Just 6 of the 88 countries pass the test of a positive and significant coefficient greater than or equal to one. The magic six include two economies with trivial amounts of aid: Hong Kong (which got an average of 0.07% of GDP in aid 1965–1995) and China (average of 0.2% of GDP). The other four — Tunisia, Morocco, Malta, and Sri Lanka — did have nontrivial amounts of aid. The other 82 countries fail the test.

This result is reminiscent of the results of Boone (1994), who found a zero coefficient on aid in a cross-section investment regression. Unlike Boone (1994), I do not intend here to make a general statement about whether foreign aid is effective. There are many problems in doing such an evaluation, most of all the endogeneity of aid. It could be that in any given country that there was an adverse shock like a drought that caused investment to fall and aid to increase. I am only testing the first link in a particular model — the financing gap model. I am asking whether investment and aid jointly evolved the way that the users of this model

Table 2
Results of regressing GDP Growth on Gross Domestic Investment/GDP with a constant, country by country, 1950–1992

<table>
<thead>
<tr>
<th>Coefficient of Growth on Investment/GDP</th>
<th>Number of countries</th>
<th>% of sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td>138</td>
<td>100</td>
</tr>
<tr>
<td>Positive, significant, “zero” constant, and 2 < 5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Positive, significant, and “zero” constant</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Positive and significant</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Positive</td>
<td>77</td>
<td>56</td>
</tr>
<tr>
<td>Negative</td>
<td>61</td>
<td>44</td>
</tr>
<tr>
<td>Negative and significant</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>
How “necessary” is investment in the short run? High growth episodes (7% or above) that have “required” investment/GDP (%)

<table>
<thead>
<tr>
<th>Assuming ICOR of</th>
<th>Period lengths</th>
<th>Annual averages (%)</th>
<th>4-year averages (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>37</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

expected. The financing gap model aid advocates anticipated that aid would go into investment, not into tiding countries over droughts. According to Table 1, investment and aid did not evolve the way they expected.

5.2. Investment to growth

The second link in the financing gap model is the linear growth–investment relationship. Does the linear investment–growth relationship work well in the data? Of course, if we recalculate ICOR every period to be (lagged investment/GDP) over growth, then the relationship holds tautologically. What we really want to know is if the relationship has some predictive power, i.e., if we can predict growth with a constant ICOR.

Let me reiterate here that I am testing the short-run link between investment and growth that the financing gap model postulates. The growth literature has generally found a robust long-run relationship between investment and growth (Levine and Renelt, 1991).

Let us regress growth on lagged investment to GDP individually for each country. We have 138 countries with at least 10 observations on growth and lagged investment (the median number of observations is 36). I include a constant (remember the ICOR model does not have one) and then do a test of its significance. Table 2 shows the results of these country by country regressions. By a “zero” constant, I mean a constant that is insignificantly different than zero.

There are four countries that pass all the tests of a positive and significant relationship between growth and investment, a “zero” constant, and an ICOR between 2 and 5. The four economies that pass the tests are an unusual assortment: Israel, Liberia, Reunion (a French colony), and Tunisia.

Remembering the few countries where the aid-to-investment link worked as expected, I can now say that the financing gap model fits one country: Tunisia. Unfortunately, one success out of 138 countries is likely to have occurred by

21 The other three countries had ICORs of 1.1, 1.7, and 6.8.
Table 4
How “necessary” is increased investment in the short run? Increased growth episodes that have “required” increase in investment/GDP (%)
Investment is lagged one period, for both 1- and 4-year averages.

<table>
<thead>
<tr>
<th>Assuming ICOR of</th>
<th>Period lengths</th>
<th>Annual averages (%)</th>
<th>4-year averages (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

chance even if the model had no empirical validity — which so far the evidence says it does not.

5.3. Is investment necessary in the short-run?

As we have seen, a common defense for the use of the financing gap model is that “investment is necessary but not sufficient”. Table 3 shows how often the necessary investment rates (lagged one period) accompany 1-year high growth episodes over 1950–1992 (defining high growth as 7% or above, a desideratum often mentioned). At the optimistic ICOR of 2, we have less than half of the sample complying with the necessary conditions. At the “normal” ICOR of 3.5, nine-tenths or more of the sample violate the “necessary” condition. At an ICOR of 5, the “necessary” investment accompanied just 1% of the high growth episodes. (Recall that the regressions estimated ICOR to be above 5 in both the annual and 4-year average datasets.)

The second column of Table 3 shows how many 4-year long high growth episodes were accompanied by the necessary investment rates (lagged one period). There were no 4-year high growth episodes that had the “required” investment implied by an ICOR of 5; even at the highly optimistic ICOR of 2 just half of the episodes had the “required” investment. At short-run horizons — which is where the Financing Gap model is applied — there is no evidence that investment is a necessary condition for high growth.

Using the 1- and 4-year averages for both growth and investment, let us also look at episodes where growth increased and see how often investment increased by the “required amount”. Table 4 gives us the answer: during episodes of increased growth with 4-year periods, investment increased by the “required amount” between 6% and 12% of the time, depending on the ICOR. The other 88%–94% of the episodes violated the “necessary condition”. Of course, the data are even more unkind to the “necessary condition” with annual averages.

22 For example, the developing nations in September 1980 in the UN set a target of 7% growth for themselves as part of the ill-fated north–south negotiations; also note earlier text examples.

23 See the similar finding by Blomstrom et al., 1996.
Empirically speaking, increases in investment are neither necessary nor sufficient for increases in growth over the short-run that IFIs use the financing gap model. This calls into question the urgency of filling the financing gap to support that investment, as pronounced in many IFI documents.

5.3.1. Jointly evaluating the aid-to-investment and investment-to-growth links

We can construct a counterfactual of what income a country would have achieved if the predictions of the financing gap model had been correct, and then compare the counterfactual to the actual outcome. The model predicts that aid goes

![The Per Capita Income that would have been if all Aid had gone into Investment and Investment had gone into Growth.

Fig. 1. The gap between the linear aid–investment–growth model and the actual outcome in Zambia.](image-url)
into investment one-to-one, or more. I stick to the one-to-one prediction to be conservative. So, investment/GDP will increase over the initial year by the amount that aid/GDP increases over the initial year. Then this investment will increase growth, with a 1-year lag. (I will use an ICOR of 3.5 since it is the mid-point of the commonly cited 2 to 5 range.) This predicts total GDP growth.

To get per capita growth, we subtract population growth (remember in the financing gap model, more labor does not increase total GDP). So we have the prediction:

\[
\text{GDP Growth per capita} = \frac{\text{Initial Investment/GDP} + \text{Increase in Aid/GDP over initial year}}{\text{ICOR} - \text{Population growth}}
\]

Fig. 1 shows the comparison of Zambians’ actual per capita income to the predicted income if filling the Financing Gap had worked. Zambia would today be
an industrialized country, instead of being one of the poorest countries in the world. Zambia is one of the worst-predicted cases because it initially had a high investment rate and it got a lot of aid. Zambia’s investment rate went down, not up, as the aid increased and the investment in any case did not yield short-run growth.

Fig. 2 shows the predicted Financing Gap model growth for all of the aid recipients. I show predicted per capita growth on the horizontal axis and actual per capita growth on the vertical axis. If the equation had predicted growth well, we would expect to see points clustering along the 45% line through the diagram. We do not see such a clustering. We have predicted superstars like Chad, Comoros, Guinea-Bissau, Guyana, Jamaica, Mauritania, Mozambique, Zambia, and Zimbabwe, countries who instead turned out to be growth disasters. We have real superstars like Hong Kong, Indonesia, Malaysia, Singapore, and Thailand that the equation did not pick up. Instead of a positive one-to-one correlation, the correlation of actual and predicted growth is slightly negative.

6. Why is the model still used?

Why is the financing gap model still used in the applied development community? I speculate that it is a combination of four things. First, the model provides a handy back-of-the-envelope calculation of aid requirements, and justifies the aid requirements as “necessary” for growth. This helps aid agencies rationalize aid flows to each country. No other model delivers such a rationalization and calculation so cheaply.

Second, there is the multiple equilibrium model of “crime”. If almost everyone is committing a “crime”, the chances of a “criminal” being caught and punished are low. We have seen that the use of the financing gap model is so widespread that even if a user was accused of using an out-of-date model, the user could argue that “everyone else is doing it”.

Third, there is the public good nature of a model. A model, like many forms of knowledge, is a nonrival, nonexcludable public good. An individual country analyst does not internalize the benefits to the entire development community of building a new model to replace the financing gap model; she only compares the benefits for her report against the substantial fixed costs of building a model.

Fourth, there is the pattern of incentives in the academic literature. The academic literature tends to reward creation of new models at the frontier of knowledge, not the critical evaluation of practitioners’ use of a decades-old model.

7. Conclusions

The financing gap model lies behind calculations that influence economic policy and the allocation of aid resources in the IFIs. Yet, the financing gap
growth model fails all theoretical checks and empirical tests this paper performs upon it. There is no theoretical or empirical justification for assuming a short-run proportional relationship between growth and "investment requirements". There is no theoretical or empirical justification for the assumption that filling a "financing gap" determined by "investment requirements" will raise investment or growth in the short run.

Nevertheless, the current structure of incentives in the academic world and the aid community suggest that use of the financing gap model will continue. To change this (and analogous mismatches between academic knowledge and applied practice), academic researchers should devote more research effort to critiquing models used in practice. Within the IFIs and other policy-making organizations, there should be a process of subjecting applied models to outside academic review.

Acknowledgements

Views expressed here are the author’s alone and not to be taken as those of the World Bank. I am grateful to John Adelman, Nicholas Carter, Norman Hicks, and John Holsen for sharing their reminiscences about modelling in the World Bank. I am also very grateful for comments on a previous draft from Albert Agbonyitor, Jorge Araujo, Gerald Barney, Nicholas Carter, Hamid Davoodi, Cevdet Denizer, Hinh Dinh, Richard Eckaus, Dag Ehrenpreis, Gerry Helleiner, Norman Hicks, Andrew Kamarck, Mohsin Khan, Auguste-Tano Kouame, Aart Kraay, Ross Levine, G.M. Meier, Raj Nallari, Dwight Perkins, Guy Pfeffermann, Jacques Polak, Lant Pritchett, Dani Rodrik, Walt Rostow, John Shilling, Robert Solow, Nicholas Stern, Moshe Syrquin, Jakob Svensson, Jos Verbeek, John Williamson and to the participants in seminars at the World Bank, IMF, and CERGE, Charles University, Prague. If any errors have survived this wealth of good advice, the fault is mine alone.

References

International Monetary Fund (IMF), 1993. World Economic Outlook, October 1993.
International Monetary Fund (IMF), 1996b. World Economic Outlook, October 1996.
World Bank, 1993b. Lithuania: The Transition to a Market Economy.