Multidimensional Incentive-Compatibility without Single-Crossing1,2

Aloisio Araujoa,b, Daniel Gottliebc, Humberto Moreirab

aInstituto Nacional de Matematica Pura e Aplicada, Estrada Dona Castorina, 110, 22460-320
Rio de Janeiro, RJ, Brazil

bFundação Getulio Vargas, Praia de Botafogo, 190, 22253-040 Rio de Janeiro, RJ, Brazil

cDepartment of Economics, MIT, E52-391, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA

Abstract

In this paper, we characterize incentive-compatible allocations when the single-crossing condition does not hold. We use this characterization to study implications of signaling and screening models when the single-crossing condition is violated. The unique robust prediction of signaling is the monotonicity of transfers in (costly) actions. Any function from the space of types to the space of actions and an increasing transfer schedule can be rationalized as an equilibrium profile of many signaling models. We provide a new characterization of optimal contracts in multidimensional screening. We also identify an additional necessary and sufficient condition for the solution of a screening model when valuations are type-independent. This condition states that the principal’s profit grows at a higher rate under asymmetric information than under symmetric information. However, it no longer needs to hold when valuations are type-dependent.

JEL Classification: D82, D86, J41.

Keywords: Signaling and screening games, single crossing condition, incentive compatibility, non-monotonicity.

1Preliminary version. We thank the seminar participants of Université de Toulouse 1, MIT, EEA (Vienna, 2006), LAMES (Mexico, 2006), Colegio de Mexico, IBMEC-Rio, PUC-Rio, SBE, Vinicius Carrasco, Juliano Assunção, Thomas Mariotti, and Muhamet Yildiz.

2E-mail addresses: aloisioa@fgv.br (A. Araujo), daniel_g@mit.edu (D. Gottlieb) and humberto@fgv.br (H. Moreira).
1 Introduction

In many markets, some participants have information that is relevant to other participants. Frequently, information can be inferred from actions taken by the informed parties. The uninformed may move first and induce the informed to take such actions (screening) or the informed may move first and take actions in order to signal their information (signaling).

An important result in models with asymmetric information is the Revelation Principle, which states that any allocation process can be replicated by a mechanism in which participants are asked to reveal their private information. The Revelation Principle reduces a possibly complicated problem to an easy-to-state mathematical-programing problem, where each agent prefers to reveal his private information honestly (incentive-compatibility). However, the general analysis of such mathematical-programing problem is not straightforward.

Most of the literature implicitly or explicitly assumes that individuals’ marginal utility of taking the action can be ordered (single-crossing condition, SCC). Under this assumption, Mirrless (1971), Spence (1974), and Rothschild and Stiglitz (1976) showed that the solution of the programing problem is determined by a first-order and a monotonicity condition and the characterization of the set of incentive-compatible allocations becomes straightforward. McAfee and McMillan (1988) characterize incentive-compatible allocations in a multidimensional model under a single-crossing condition and Quinzii and Rochet (1985) characterize the separating equilibria of a multidimensional signaling model under a single-crossing condition.

In this paper, we characterize incentive-compatible allocations under a condition that is weaker than the SCC. This characterization is used to study the implications of signaling and screening models when the SCC does not hold. In the case of signaling, we also obtain necessary and sufficient conditions for signals to reveal all unobservable information (full-separability).³

In the case of screening models, we provide a new characterization of implementable and optimal allocations. This characterization is complementary to Rochet (1987), McAfee and McMillan (1988), and Armstrong (1996). Our condition (discussed in Section 2) is easy to verify and is compatible with most specifications used in applied work (e.g. utility functions that are linear or quadratic with respect to the decision variable), as well as with cost functions that do not satisfy the SCC.⁴

Recently, the SCC has been criticized both on theoretical and empirical grounds. The first type of criticisms stress that, even though this property may be natural and intuitive

³Since Kholleppel’s (1983) example of a model where no separating equilibrium existed, the existence of a fully-separating equilibrium became an important issue. Engers and Fernandez (1987) proved that the SCC was sufficient for full-separability. This article also extends previous results on conditions required for full-separability by obtaining necessary and sufficient conditions. Matthews and Moore (1987) have analyzed a two-dimensional screening model where utility functions cross twice.

⁴Armstrong (1996) assumes homogeneity of the utility function with respect to the type parameter, separability of the agent’s indirect utility, and separability of the density function. McAfee and McMillan (1988) on the other hand assume a generalized single-crossing condition that requires the shadow-price indifference curves to be hyperplanes.
in one-dimensional models, it cannot be extended in a sensible manner to multidimensional settings. Models with discrete multidimensional types can be transformed into one-dimensional type models but the SCC is usually broken (see Rochet and Stole, 2003). Furthermore, utility functions that satisfy the analog of the SCC in multidimensional settings may fail to satisfy this condition in the presence of other signals (Araujo et al., 2007) or when there is correlation between the characteristics (Araujo and Moreira, 2003). Also, the presence of a moral hazard dimension may cause the SCC to be violated (Acemoglu, 1998).

In some applications, it is widely recognized that the assumption of one-dimensional types may be implausible. In the context of education, for example, Heckman (2005) has argued that “abilities are multiple in nature”, and that one-dimensional models cannot capture important phenomena (see Araujo et al., 2007, or Heckman et al., 2005).

Criticisms made on empirical grounds stress that several examples of interesting and intuitive phenomena have been proved to arise only when one drops this assumption. Bagwell and Bernheim (1996) investigate conditions under which consumers may be willing to pay higher prices for functionally equivalent goods as away to signal wealth ('Veblen effects'). Their main finding is that Veblen effects do not arise when the SCC holds but may arise when it fails.

Bernheim (1991) proves that firms may choose to distribute dividends even when they are taxed more highly than stock repurchases ('dividend puzzle') when the SCC fails. Bernheim and Severinov (2003) provide an explanation for the equal division of bequests based on a model where the SCC fails. Rotemberg (1988) shows that a tax on a signal may be Pareto-improving if the SCC fails to hold. Similarly, Bernheim and Redding (2001) show that taxing signals can be Pareto-improving in a model where the SCC does not hold. Bernheim (1994) studies a model of conformity in social interactions where the single-crossing condition fails.

Araujo et al. (2007) study a model where high types choose to engage in a lower amount of signaling than intermediate types (see Example 1). Araujo et al. (2004) show that the relation between dividend payments and earnings may be non-monotone when the SCC is not satisfied, and Smart (2000) and Araujo and Moreira (2003) show that the relation between risk and insurance coverage may not be monotonic.

Thus, one may question what the empirical content of the signaling and screening models is once the SCC is not assumed. In other words, which implications of these models are not a result of the particular specification of the cost of the activity. Similarly, it is important to understand which results from the standard models generalize to multidimensional environments.\(^5\)

We show that the only robust prediction of signaling is the monotonicity of transfers in costly actions. However, this prediction is shared by most alternative (symmetric information) models. Therefore, even when one employs a selection criterion, signaling can almost never be rejected. Another negative result concerns the identifiability of signaling

\(^5\)In a model of insurance under asymmetric information, Chiappori et al. (2006) argue that coverage and risk are positively correlated even when the SCC is not imposed or when types are multidimensional. However, although we also obtain a monotonicity condition, our results are not directly applicable to insurance since we follow the standard mechanism design model and assume quasi-linear utilities.
models. It is shown that, for each signaling model, there exists a large class of signaling models with the same observable implications. Hence, it is impossible to determine which is correct among a large class of models.

The characterization of solutions of multidimensional screening allows us to identify a new necessary and sufficient condition when valuations are type-independent. This condition states that the principal’s profit must grow at a higher rate under asymmetric information than under symmetric information. However, this condition no longer needs to hold when valuations are type-dependent.

Overall, our results imply that special attention must be devoted to the specific characteristics of the market being studied. Only with precise knowledge about the cost of engaging in the activity (utility function), the relevant number of dimensions, and the technology, one is able to obtain testable predictions of the model.

Our paper is also related to the literature on monotone comparative statics, which studies necessary and sufficient conditions for solutions to maximization programs to be monotone. One important result in this literature is that the SCC is sufficient for the solution to be monotone (c.f., Milgrom and Shannon, 1994). Furthermore, if the choice set is sufficiently rich, this condition is also necessary. In the present paper, we show that the cross-partial derivative of the cost function determines not only whether the set of incentive-compatible allocations is increasing or decreasing but the whole shape of the solution.

The rest of the paper is organized as follows. Section 2 characterizes the set of incentive-compatible allocations and studies the restrictions imposed by incentive-compatibility. In Section 3, we present the signaling model and characterize the resulting equilibrium. Then, we study the additional implications that signaling imposes. Section 4 presents the screening model. Then, Section 5 concludes.

2 Characterization of Incentive Compatibility

The economy consists of informed agents and an uninformed principal. Each agent is characterized by a multidimensional parameter (‘type’) \(\theta \in \Theta \), where \(\Theta \subset \mathbb{R}^n \) is a compact and convex set with non-empty interior. Types are distributed according to a continuous density \(p : \Theta \to \mathbb{R}_{++} \). Agents may engage in a costly activity \(y \in \mathbb{R}_+ \). Principals have a continuously differentiable valuation function \(f : \Theta \times \mathbb{R}_+ \to \mathbb{R}_+ \).

The cost of the activity \(y \) is given by a \(C^3 \) function \(c : \Theta \times \mathbb{R}_+ \to \mathbb{R}_+ \), where

Assumption 0 \(c_y(\theta, y) > 0 \) and \(c_{\theta_i}(\theta, y) < 0 \), for all \(\theta \in \Theta \), \(y \in \mathbb{R}_+ \), and \(i = 1, \ldots, n \).

The first inequality means that \(y \) is costly while the second means that higher types have a lower cost of engaging in the activity \(y \).

The standard single-crossing condition states that \(c_{\theta,y} \) does not change signs so that having a higher type has a monotonic effect on the marginal cost of engaging in \(y \). The following assumption generalizes the single-crossing condition in the sense that it allows \(c_{\theta,y} \) to change sign.

Assumption 1 The sign of \(c_{\theta,y}(\theta, y) \) does not depend on \(y \), \(i = 1, \ldots, n \).
Assumption 1 implies that $c_{\theta_iy} (\theta, y) = 0$, for all $i = 1, ..., n$. It is satisfied in the case of costs that can be expressed as

$$\tilde{c}(\theta, y) = J \times y^2 + y \times \xi(\theta) + \psi(\theta),$$

where J is a real number and ψ and ξ are real functions of θ. This representation includes the standard cases of costs that are linear or quadratic in y.

In a context of education as an informational signal, for example, the agents are workers, the principal is an employer, the activity y is the amount of schooling, and the price w is the wage received by workers. In an industrial organization context, the agents are firms, the principal is a potential buyer, and the activity may be the amount spent on advertisement or the duration of warranties. The following example considers the model from Araujo, Gottlieb, and Moreira (2007).

Example 1 Consider a labor market model. Risk neutral workers engage in a costly schooling activity $y \in \mathbb{R}_+$ and obtain wages $w \in \mathbb{R}_+$. Their ability is captured by a two-dimensional vector $\theta \equiv (\theta_1, \theta_2) \in \mathbb{R}^2$ and the cost of schooling is\(^6\)

$$c(\theta, y) = \frac{y}{\theta_1 \theta_2}.$$

Employers do not observe ability but observe the amount of schooling y. They can also interview workers, which gives them an additional measure of each worker’s skills. The interview technology is represented by the following function:

$$g(\theta, y) = \alpha \theta_1 + \theta_2 + \beta y.$$

A type-θ worker produces a good that is worth $f(y, \theta)$, where $f_{\theta_1} > 0, f_y \geq 0, f_{yy} \leq 0$, and $f_y \theta_1 \geq 0$. For a fixed $g(\theta, y) = \bar{g}$, we can write the cost of schooling as

$$\tilde{c}(\theta_1, y, \bar{g}) \equiv \frac{y}{\theta_1 (g - \alpha \theta_1 - \beta y)}.$$

Note that the single-crossing condition does not hold since $\tilde{c}_{\theta_1y} \left(\geq \right) 0 \iff \theta_1 \left(\geq \right) \frac{g - \beta y}{\alpha \theta_1}$.

The single-crossing condition means that exchanging one unit of ability θ_1 for α units of θ_2 would always be either desirable or undesirable in terms of reducing the cost of schooling. In the specification above, because the abilities are imperfect substitutes, this exchange is desirable for high levels of θ_1 and undesirable for low levels of θ_1. Therefore, the substitutability between skills breaks down the single-crossing condition. Furthermore, Assumption 1 is satisfied when $\beta = 0$.

The next example describes a model of warranties:

Example 2 Consider a model of warranties and uncertain product quality. Product quality is determined by a two-dimensional vector of characteristics $\theta \equiv (\theta_1, \theta_2) \in \mathbb{R}^2$. For

\(^6\) θ_1 and θ_2 can be interpreted as cognitive and non-cognitive skills, for example.
concreteness, interpret θ_1 as the reliability and θ_2 as the complexity of the good. Consumers observe a measure of product quality given by the function $g(\theta) = \alpha \theta_1 + \theta_2$.

Producers may offer a warranty that repairs any defect that may occur until time y. Let $w(y, g)$ denote the price charged conditional on $g(\theta) = g$ when warranty y is provided.

Denote by $f(\theta_1, \theta_2, y)$ the expected value of the good to consumers given warranty y and $c(\theta_1, \theta_2, y)$ denote the expected cost of producing the good and providing warranty y. We assume that reliability reduces the cost of providing warranty whereas complexity increases this cost.

Lemma 1

Let $\theta_1 < 0$, $\theta_2 > 0$.

As in Example 1, we can rewrite the expected cost of producing the good conditional on g as $\bar{c}(\theta_1, y, \bar{g}) \equiv c(\theta_1, \alpha \theta_1 - \bar{g}, y)$. Note that $\bar{c}_{\theta_1} y = c_{\theta_1 y} + \alpha c_{\theta_2 y}$ may switch signs because the first term is negative while the second term is positive. Therefore, the fact that reliability decreases the cost of providing warranty whereas complexity increases this cost implies that single-crossing condition may not hold. In particular, if we assume linear costs,

$$c(\theta_1, \theta_2, y) = A \times \theta_1 \times (K - \theta_2) \times y,$$

where A and K are positive real numbers, it follows that $\bar{c}_{\theta_1} y > 0 \iff \theta_1 \{ K + y > 2\alpha \}$ and Assumption 1 is satisfied.

A mechanism $(y(\theta), w(y))$ is incentive-compatible if it satisfies the following incentive-compatibility constraint:

$$y(\theta) \in \arg \max_{\bar{g}} w(\bar{y}) - c(\theta, \bar{y})$$

for all $\theta \in \Theta$. Equivalently, we say that $w(y)$ implements $y(\cdot)$.

Before proceeding, we need to introduce some notation. We say that a type θ is regular for $y(\cdot)$ if the differential $Dy(\theta)$ has full rank; otherwise θ is critical. Finally, \bar{g} is a critical value of y if there exists a critical type θ such that $y(\theta) = \bar{y}$, otherwise \bar{y} is called a regular value of y. We refer to a C^1 function with measure zero of critical values as a regular function. In what follows we will only consider mechanisms $(y(\theta), w(y))$ such that y and w are regular.

Which mechanisms $(y(\theta), w(y))$ satisfy incentive-compatibility? In the remainder of this section, we first analyze necessity and then sufficiency. The following lemma gives the usual first- and second-order conditions of the incentive compatibility constraint.

Lemma 1 Let $(y(\cdot), w(\cdot))$ be an incentive-compatible mechanism. Then,

$$w'(y(\theta)) = c_y(\theta, y(\theta))$$

$$c_{\theta_1 y} (\theta, y(\theta)) y_0(\theta) \leq 0$$

for all $i = 1, \ldots, n$ and $\theta \in \Theta$.

7 Apart from the differentiability assumption, the only restrictions that this condition imposes to the incentive compatible profile is that there are no discontinuities in $y(\cdot)$ and its derivative. The results could be generalized with an adaptation in the proof of Theorem 1: the price profile would have kinks (which correspond to the discontinuities of the derivative of y) and disconnected domain (which would correspond to the discontinuities in y).

8 By Sard’s theorem, this condition is automatically satisfied if $y \in C^\infty$, $n > 1$.

6
Proof. To simplify the proof, let us assume that \(y(\cdot) \) is \(C^2 \). If \((y(\cdot), w(\cdot))\) is incentive-compatible, it must satisfy:
\[
\theta \in \arg \max_{\tilde{\theta}} w\left(y\left(\tilde{\theta}\right)\right) - c\left(\theta, y\left(\tilde{\theta}\right)\right),
\]
whose local first- and second-order conditions are
\[
w'(y(\theta)) y_{\theta_i}(\theta) - c_y(\theta, y(\theta)) y_{\theta_i}(\theta) = 0, \\
w''(y(\theta)) [y_{\theta_i}(\theta)]^2 + w'(y(\theta)) y_{\theta_i \theta_i}(\theta) - c_{yy}(\theta, y(\theta)) [y_{\theta_i}(\theta)]^2 - c_y(\theta, y(\theta)) y_{\theta_i \theta_i}(\theta) \leq 0.
\]
Equation (1) follows from the first-order condition. Differentiating the first-order condition (which must hold for every \(\theta \)) yields
\[
w''(y(\theta)) [y_{\theta_i}(\theta)]^2 + w'(y(\theta)) y_{\theta_i \theta_i}(\theta) - c_{yy}(\theta, y(\theta)) [y_{\theta_i}(\theta)]^2 - c_y(\theta, y(\theta)) y_{\theta_i \theta_i}(\theta) \\
= c_{\theta_i y}(\theta, y(\theta)) y_{\theta_i}(\theta).
\]
Substituting in the second order condition, we obtain \(c_{\theta_i y}(\theta, y(\theta)) y_{\theta_i}(\theta) \leq 0 \).

In the single-crossing case, equation (2) reduces to a monotonicity condition. When the single-crossing condition does not hold, equation (2) implies that incentive-compatible mechanisms may not be monotonic: \(y \) has to be increasing in the region where \(c_{\theta_i y} < 0 \) and decreasing in the region where \(c_{\theta_i y} > 0 \).

In one-dimensional models where mechanisms are monotone, if two types pool in the activity \(y \), all intermediate types must also be pooled with them. As a consequence, pooling sets must be intervals. However, when mechanisms are not monotone, a disconnected set of types may be pooled. Araujo and Moreira (2004) have shown that a necessary condition for incentive-compatibility in this case is the so-called marginal utility identity. This condition implies that if two disconnected types are pooling in an activity \(y \), they should have the same marginal cost. The following lemma establishes this result in our context:

Lemma 2 If two individuals with regular types \(\theta \) and \(\tilde{\theta} \) choose the same signal, then their marginal cost must be the same:
\[
y(\theta) = y\left(\tilde{\theta}\right) \Rightarrow c_y(\theta, y(\theta)) = c_y\left(\tilde{\theta}, y\left(\tilde{\theta}\right)\right).
\]

Proof. Suppose that \((w(y(\theta)), y(\theta))\) is incentive-compatible. Then, (1) must hold. Therefore, if \(\theta \) and \(\tilde{\theta} \) are regular types such that \(y(\theta) = y\left(\tilde{\theta}\right) \), equation (1) implies that
\[
c_y(\theta, y(\theta)) = c_y\left(\tilde{\theta}, y\left(\tilde{\theta}\right)\right).
\]

We have shown that the local conditions (1), (2) and the global condition (3) are necessary for incentive-compatibility. The following example shows that they may not be sufficient when Assumption 1 does not hold.
Example 3 Suppose that the cost of activity y is
\[c(y, \theta) = \frac{y}{2(\theta - 1)} + \frac{1}{8} \left[y - (\theta - 1)^2 \right]^2 - \frac{5\theta}{3} \left[y - (\theta - 1)^2 \right]^3, \]
so that Assumption 1 is not satisfied. Consider the following mechanism:
\[y(\theta) = (\theta - 1)^2, \]
\[w(y) = \sqrt{y}, \]
where $\Theta = [1.1, 2].$

Note that conditions (1), (2), and (3) are satisfied. Under the proposed mechanism, type $\theta = \frac{3}{2}$ chooses $y\left(\frac{3}{2}\right) = \frac{1}{4}$ and obtains utility $w\left(\frac{1}{4}\right) - c\left(\frac{3}{4}, \frac{1}{2}\right) = \frac{1}{4}.$ However, by choosing $y = 1,$ he obtains $w(1) - c\left(\frac{3}{2}, 1\right) = \frac{63}{64} \approx \frac{3}{4},$ which is a profitable deviation. Therefore, (1), (2), and (3) may not prevent non-local deviations when Assumption 1 does not hold.

The proposition below establishes that, under Assumption 1, the necessary conditions are sufficient as well.

Proposition 1 Suppose Assumption 1 holds. A mechanism $(y(\cdot), w(\cdot))$ is incentive-compatible if and only if the first- and second-order conditions (1) and (2), and the pooling condition (3) are satisfied.

Proof. (\Rightarrow) Follows from Lemmas 1 and 2.

(\Leftarrow) Let us define the wage schedule $w \in C^1.$ By (3) we can well define the derivative of w by $w'(y) = c_y(\theta, y)$ for $y = y(\theta)$ and all regular types $\theta \in \Theta.$ Since the set of critical values has zero measure, we can extend continuously the definition of $w'(y)$ for critical values. Then, define the following wage schedule for $y \in y(\Theta):$
\[w(y) = \int_{y_{\min}}^{y} w'(x)dx + w_{\min}, \]
where $w_{\min} \geq \max_{\theta \in \Theta} c(\theta, 0)$ (which ensures that all types will participate) and $y_{\min} = \min_{\theta \in \Theta} y(\Theta).

Let θ be first a regular type (for critical θ the argument is made by continuity). The first-order condition of the previous problem is $w'(y(\theta)) = c_y(\theta(\theta), \theta),$ which holds by the definition of $w(\cdot).$

Given a regular $\hat{y} = y(\hat{\theta}),$ there exists $i \in \{1, \ldots, n\}$ such that $y_{\theta_i}(\hat{\theta}) \neq 0.$ By the implicit function theorem there exists a function φ such that, locally, $\hat{\theta}_i = \varphi(\hat{y}, \hat{\theta}_{-i}),$ where $\hat{\theta}_{-i}$ is the vector $n - 1$ dimensional $\hat{\theta}$ but coordinate $i.$ Taking the derivative with respect to \hat{y} in the equality $w'(\hat{y}) = c_y(\hat{y}, \varphi(\hat{y}, \hat{\theta}_{-i}), \hat{\theta}_{-i})$ we get

\[w''(\hat{y}) = c_{yy}(\hat{y}, \hat{\theta}) + c_{\theta y}(\hat{y}, \varphi(\hat{y}, \hat{\theta}_{-i})) \varphi_y(\hat{y}, \hat{\theta}_{-i}). \]

For $y \notin y(\Theta),$ we extend the wage function linearly such that the derivative is continuous.
Therefore, the second derivative of the agent’s utility at \hat{y} is
\[w''(\hat{y}) - c_{yy}(\hat{y}, \hat{\theta}) = c_{yy}(\hat{y}, \hat{\theta}) - c_{yy}(\hat{y}, \theta) + c_{\theta,y}(\hat{y}, \varphi_y(\hat{y}, \hat{\theta} - i)) \varphi_{y}(\hat{y}, \hat{\theta} - i). \]

However, Assumption 1 implies that $c_{yy}(\hat{y}, \hat{\theta}) - c_{yy}(\hat{y}, \theta) = 0$ because $c_{\theta,y} = 0$ for all i. Then, the sign of the second derivative is given by (2), i.e., it is negative. Again, for critical \hat{y} we can use continuity. This implies that $y(\theta)$ is the maximum on $y(\Theta)$. This concludes the proof. ■

Next, we use the characterization result to study implications of incentive-compatibility when the single-crossing condition is not imposed. Our assumption that the activity y is costly implies that transfers must be strictly increasing in y. Therefore, $w'(y) > 0$ is a necessary condition for incentive-compatibility. The theorem below states that it is also a sufficient condition. More specifically, given any mechanism $(y(\theta), w(y))$ we can find a cost function satisfying Assumptions 0 and 1 for which such schedule is incentive-compatible.

Theorem 1 Let $y(\cdot)$ be a regular function and let $w(\cdot)$ be a positive C^2 function. There exists a C^1 cost function satisfying Assumption 1 for which $(y(\cdot), w(\cdot))$ is incentive-compatible if and only if $w(\cdot)$ is strictly increasing. Moreover, if $w(\cdot)$ is concave, such cost function can be chosen such that Assumption 0 is also satisfied.

Proof. (\Rightarrow) Follows from revealed preference.

(\Leftarrow) Let us define the following C^1 function:
\[c(\theta, y) = A(\theta) + w'(y(\theta))y + \frac{K}{2}(y - y(\theta))^2, \]
where $K > 0$ is a constant such that $w''(y(\theta)) < K$ and $A(\theta)$ is such that $c(\theta, y) > 0$ and $c_{\theta}(\theta, y) < 0$. Such function $A(\theta)$ exists.

The function c is C^1 because $y(\Theta)$ is a compact set and $w(\cdot)$ is C^2. Moreover, the marginal cost $c_y(\theta, y) = w'(y(\theta)) + K(y - y(\theta))$ is always positive along $y = y(\theta)$. A sufficient condition for the existence of a K such that the marginal cost is positive for all $y \geq 0$ and $w''(y(\theta)) < K$ is $w''(y(\theta)) < w'(y(\theta)) K(y(\theta))$ for all θ. This condition is obviously satisfied when the wage function is concave since $w' > 0$ and Θ is compact.

Note that c satisfies Assumption 1. We claim that the pair $(y(\cdot), w(\cdot))$ is incentive-compatible. First, (1) is trivial and (2) holds because
\[c_{\theta,y}(\theta, y(\theta))y_{\theta}(\theta) = [w''(y(\theta)) - K] [y_{\theta}(\theta)]^2 \leq 0. \]

Furthermore, if θ and $\hat{\theta}$ are regular values of $y(\cdot)$, then
\[c_y(\theta, y) = c_y(\hat{\theta}, y) \iff w'(y(\theta)) - Ky(\theta) = w'(y(\hat{\theta})) - Ky(\hat{\theta}) \iff y = y(\theta) = y(\hat{\theta}), \]

since $w'(y) - Ky$ is decreasing on y (by the assumption on K), i.e., (3) holds. Using Proposition 1, we conclude the proof. ■
The theorem above implies that, apart from the monotonicity of the transfer function, incentive-compatibility by itself does not lead to any additional restrictions on the space of incentive-compatible mechanisms. In the next sections, we consider the equilibria of signaling games and screening models to analyze which additional restrictions arise.

3 The Signaling Game

In this section, we consider a standard signaling game where preferences are as described in the previous section. There are many identical principals (‘receivers’) who act competitively. For simplicity, we consider the case where the principal’s valuation function does not depend on the amount of the activity (‘signal’) exerted by the agent (‘sender’):

\[f(\theta, y) = f(\theta). \]

Therefore, the only way through which the activity affects the transfer is through its informational content. Of course, our results extend to the case where the activity also affects the valuation. Our competitive assumption implies that the transfer is equal to the expected valuation of the sender conditional on the signaling activity.

The timing of the signaling game is as follows. First, nature determines the type of each sender, \(\theta \), according to the density function \(p \). Then, senders choose the amount of signaling \(y \) contingent on their types. Subsequently, the market offers a transfer \(w(y) \) conditional on the observed signal.

Since all receivers are equal, we will study symmetric equilibria where the offered wage schedule is the same for every receiver. As usual, we adopt the perfect Bayesian equilibrium concept. In what follows \(E[\cdot|\cdot] \) represents the conditional expectation operator with respect to the measure of beliefs \(\mu \).

Definition 1 A perfect Bayesian equilibrium (PBE) for the signaling game is a profile of strategies \((y(\theta), w(y))\) and beliefs \(\mu(\cdot|y) \) such that:

1. The sender’s strategy is optimal given the equilibrium wage schedule, i.e., (IC) holds.

2. The market is competitive (i.e., receivers earn zero profits):

\[w(y) = E[f(\theta) | y(\cdot) = y]. \tag{4} \]

3. Beliefs are consistent: \(\mu(\theta | y) \) is derived from the sender’s strategy using Bayes’ rule where possible.

Substituting the zero-profit condition (4) into the first-order condition from incentive-compatibility (1), we obtain:

\[y_{\theta_1}(\theta) = \frac{\partial}{\partial \theta_1} E[f(\cdot)|y(\cdot) = y(\theta)] \bigg/ \frac{c_y(\theta, y(\theta))}{c_y(\theta_1, y(\theta))}. \tag{5} \]
Consider a separating equilibrium. Bayes’ rule implies that \(w(y(\theta)) = \mathbb{E}[f(\cdot)|y(\cdot) = y(\theta)] = f(\theta) \) for all \(\theta \). Therefore, equation (5) becomes \(y_{\theta} = \frac{f_{\theta}(\theta)}{c_{y}(\theta, y(\theta))} \). Therefore, Assumption 0 implies that we must have \(y_{\theta}(\theta) > 0 \) in any separating equilibrium. However, from the second-order condition from incentive compatibility (2), we can only have \(y_{\theta}(\theta) > 0 \) if \(c_{\theta, y}(\theta, y(\theta)) \leq 0 \). Hence, a fully separating equilibrium exists only if \(c_{\theta, y}(\theta, y(\theta)) \leq 0 \) for all \(\theta \): The SCC is satisfied along the equilibrium signal \(y \).

Given an equilibrium profile \((y(\cdot), w(\cdot))\), denote the type with the lowest amount of activity \(y \), the amount he chooses, and the wage he gets by

\[
\begin{align*}
\theta^{\text{min}} &= \arg\min_{\hat{\theta} \in \Theta} y\left(\hat{\theta}\right), \\
y^{\text{min}} &= y(\theta^{\text{min}}), \text{ and} \\
w^{\text{min}} &= w(\theta^{\text{min}}).
\end{align*}
\]

Let \(f^{\text{min}} \) denote the lowest valuation in the economy:

\[f^{\text{min}} = \min_{\theta \in \Theta} f\left(\theta^{\text{min}}\right). \]

In a PBE we need to make sure that agents have no incentive to deviate to actions off the equilibrium path. In order to obtain a sufficient condition for types not to benefit from deviating to actions off the equilibrium path, let beliefs off the equilibrium be given by

\[\mu(\theta|y) = \begin{cases}
1 & \text{if } \theta = \arg\min_{\hat{\theta} \in \Theta} f\left(\hat{\theta}\right), \\
0 & \text{if } \theta \neq \arg\min_{\hat{\theta} \in \Theta} f\left(\hat{\theta}\right),
\end{cases} \]

for \(y \notin y(\Theta) \). By deviating to any \(y \notin y(\Theta) \), an agent gets transfer \(f^{\text{min}} \), which gives a payoff of at most \(f^{\text{min}} - c(\theta, 0) \). Then, type \(\theta \) does not want to deviate to any action off the equilibrium path \(y \notin y(\Theta) \) if this payoff is lower than \(\mathbb{E}[f(\cdot) | y^{\text{min}}] - c(\theta, y^{\text{min}}) \). Therefore, types do not benefit from deviating to actions off the equilibrium path if \(y^{\text{min}} \geq 0 \) satisfies

\[\mathbb{E}[f(\theta) | y^{\text{min}}] = f^{\text{min}} \geq c(\theta, y^{\text{min}}) - c(\theta, 0), \quad \forall \theta. \]

Notice that the set of actions \(y^{\text{min}} \geq 0 \) such that this inequality is satisfied is non-empty (since \(y^{\text{min}} = 0 \) satisfies this condition). Moreover, when \(\theta^{\text{min}} \) is separated, the only \(y^{\text{min}} \) compatible with (7) is \(y^{\text{min}} = 0 \). Inequality (7) gives boundary conditions for the differential equation (1).

Conditions (1), (2), (3), (4), and (7) are necessary for a PBE. As in Example 3, they may not be sufficient when Assumption 1 does not hold. However, the following lemma states that they are sufficient for a PBE when Assumption 1 holds.

Lemma 3 Suppose Assumption 1 holds and let \(y(\cdot) \) and \(w(\cdot) \) be regular functions. There exists a set of beliefs \(\mu(\cdot|y) \) such that \((y(\cdot), w(\cdot), \mu(\cdot))\) is a PBE if and only if the first- and second-order conditions (1) and (2), the pooling condition (3), the zero-profit condition (4), and the boundary condition (7) are satisfied.

\(^{10}\)This condition is slightly less demanding than the SCC, which states that \(c_{\theta, y}(\theta, y) < 0 \) for all \(\theta, y \).
Proof. (\Rightarrow) Straight from Proposition 1.

(\Leftarrow) Define the transfer schedule as in Proposition 1, where w_{\min} is as defined in (6).
Observe that $w(y_{\min}) = w_{\min}$ and, by (5), $w'(y(\theta))y_{\theta}(\theta) = \frac{\partial}{\partial \theta} E[f(\cdot) | y(\cdot) = y(\theta)]$ for every regular type θ and every i. Therefore, by continuity, $w(y) = E[f(\theta) | y(\cdot) = y]$ for all $y \in y(\Theta)$, i.e., the zero profit condition holds.

Lemma 1 has shown that the agent's strategy is optimal given the equilibrium transfer schedule. This concludes the proof. ■

Inequality (7) implies that, when θ_{\min} is not separated, there may exist several boundary conditions y_{\min} that satisfy the requirements of a PBE. In order to deal with the multiplicity of equilibria, we will follow part of the literature by selecting based on an efficiency criterion. Thus, we impose as a selection criterion that

$$y_{\min} = 0$$

We will refer to a PBE satisfying condition (2) as a least costly equilibrium. The proposition below states necessary and sufficient conditions for a least costly equilibrium.

Proposition 2 Suppose Assumption 1 holds and let $y(\cdot)$ and $w(\cdot)$ be regular functions. There exists a set of beliefs $\mu(\cdot | y)$ such that $(y(\cdot), w(\cdot), \mu(\cdot))$ is a least costly equilibrium if and only if the first- and second-order conditions (1) and (2), the pooling condition (3), and the boundary condition (8) are satisfied.

Proof. Follows straight from Lemma 3. ■

Proposition 2 characterizes the least costly equilibria of the signaling model. This characterization allows us to study which restrictions follow from a signaling model when the single-crossing condition is not imposed.

We know from Section 2 that incentive-compatibility implies that the transfer schedule must be strictly increasing. Furthermore, our selection criterion implies that there must be some type θ such that $y(\theta) = 0$. The theorem below shows that these are the only implications of the signaling model.

Theorem 2 Let $y(\cdot)$ be a regular function and let $w(\cdot)$ be a positive C^2 function. There exists a C^1 cost function satisfying Assumption 1 and a distribution of types p for which $(y(\cdot), w(\cdot))$ is a least costly equilibrium profile of signals and transfers if and only if $w(\cdot)$ is strictly increasing and there exists a $\theta \in \Theta$ such that $y(\theta) = 0$. Furthermore, this equilibrium profile is the same for all distribution of types p.

Proof. (\Rightarrow) Obvious.

(\Leftarrow) Let us define the following C^1 functions: $c(\theta, y)$ as in the proof of Theorem 1 and

$$f(\theta) = w(y(\theta)).$$

Observe that c and f are non-negative C^1 functions. We claim that the pair $(y(\cdot), w(\cdot))$ are the profiles of signals and transfers in a least costly equilibrium for the economy $\{c, f, p\}$, for any density p. First, by Proposition 1 $(y(\cdot), w(\cdot))$ is incentive compatible which implies Condition 1 of the definition of the PBE. Moreover, $y(\theta) = y(\tilde{\theta}) \Rightarrow f(\theta) = f(\tilde{\theta})$, which
implies that $E[f(\cdot)|y(\theta) = y] = f(\theta)$ and \(\frac{\partial}{\partial \theta_i} \{ E[f(\cdot)|y(\theta) = y] \} = f_{\theta_i}(\theta) \), for all θ and density p. We then only need to prove the first-order conditions (5) which is equivalent to

\[\frac{f_{\theta_i}(\theta)}{c_y(\theta, y(\theta))} = \frac{w'(y(\theta))y_{\theta_i}(\theta)}{w'(y(\theta))} = y_{\theta_i}(\theta). \]

Finally, the boundary condition (8) obviously holds. Using Theorem 1, we conclude the proof.

Since the equilibrium constructed in Theorem 2 holds for all distributions p and for any cost function $c(\theta, y) = w'(y(\theta))y + \frac{K}{2}(y - y(\theta))^2$ with $K > K$, it follows that the model is not identified given data on signals and transfers. Indeed, any distribution of types is compatible with the same equilibrium profile of signals and transfers. Thus, we have the following corollary:

Corollary 1 Signaling models are not identified given data on signals and transfers: for every profile $(y(\cdot), w(\cdot))$ satisfying the conditions of Theorem 2, there is an infinite number of signaling models that have this profile as a least costly equilibrium.

Remark 1 The only robust property that emerges from the equilibrium is the monotonicity of the wage schedule. If the cost of signaling function is increasing on the signal then, by revealed preference, equilibrium wages are increasing.

Therefore, in the context of education as a signal, the only robust implication of the signaling hypothesis is the monotonicity of wages in education. However, this result is also shared by the usual human capital (symmetric information) models. Indeed, the revealed preference argument holds regardless of the link between education and productivity.

In the context of advertising as a signal, Theorem 2 implies that revenues must be increasing in advertisement. Because this is implied by revealed preference it holds regardless of the relationship between quality and advertising. It is also shared by Becker and Murphy’s (1993) model of advertisement as a good, for example.

Remark 2 For one-dimensional type models, Theorem 2 says that signaling models are compatible with non-monotonic signaling functions. However, from (2), this is only possible when the SCC is violated. Recent works show that such non-monotonic equilibria may emerge and have important empirical consequences [see Araujo et al. (2007) and Araujo and Moreira (2003)].

Theorem 2 does not allow one to control for the valuation function. From an applied perspective, it assumes that the econometrist does not observe the valuation function. Next, we show that even if one controls for the valuation function, the indeterminacy result still remains. More precisely, let $y(\theta)$ be a profile of signals and $w(y)$ be the associated transfer schedule that satisfy the conditions of Theorem 2. Fix any valuation function $f(\theta)$. We say that f is consistent with the given profile of signals and transfers if it satisfies the zero-profit condition:

\[w(y) = E[f(\cdot)|y(\theta) = y], \tag{9} \]

where the expectation is taken with respect to some distribution of types p. Definition 1 implies that this consistency requirement must be satisfied in any PBE. The following
corollary establishes that any profile of signals and transfers satisfying (9) can be rationalized by a cost of signaling function and a distribution of types as a part of a least costly equilibrium of this economy (characterized by the fixed valuation function and the distribution of types). Formally, we have the following:

Corollary 2 Let \(y(\cdot) \) be a regular function, let \(w(\cdot) \) be a \(C^2 \) function, and let \(f(\cdot) \) be a valuation function satisfying (9) with respect to a continuous density \(p \). There exists a \(C^1 \) cost function satisfying Assumption 1 for which \((y(\cdot), w(\cdot))\) is a least costly equilibrium profile of signals and transfers if and only if \(w(\cdot) \) is strictly increasing and there exists a \(\theta \in \Theta \) such that \(y(\theta) = 0 \).

Proof. (\(\Rightarrow \)) Obvious.

(\(\Leftarrow \)) Take the cost of signaling exactly as in the proof of Theorem 1 and the density \(p \). Then, following the same steps of the proof of Theorem 2 establishes the result. ■

Theorem 2 and Corollary 2 show that there are only three implications of signaling models. First, the zero-profit condition implies that transfers have to be in the convex hull of the valuation of agents. Second, our selection criterion based on efficiency requires some type to choose zero amount of the activity (least costly equilibrium). However, this result is not robust since there are PBEs that do not satisfy this condition. Third, the fact that signaling is costly implies that transfers must be strictly increasing in signals. Although this conclusion is extremely robust, it is also implied by most alternative models. Any profiles of activities \(y \) and transfers \(w \) satisfying these three conditions is compatible with a least costly equilibrium of a signaling model.

4 The Screening Model

In this section, we embed the structure of Section 2 into a screening model. There is one principal who makes a take-it-or-leave-it offer to the agent. The agent’s private information is characterized by the parameter \(\theta \), which is distributed according to the density \(p \).

The revelation principle allows us to restrict the space of contracts to direct mechanisms that satisfy the incentive-compatibility constraint (IC). Each type has an outside option that gives a constant reservation utility normalized to zero.\(^\text{11}\) Therefore, the principal faces the following participation constraint:

\[
w(y(\theta)) - c(\theta, y(\theta)) \geq 0 \quad \forall \theta \in \Theta. \tag{IR}
\]

The following definition states the principal’s problem:

Definition 2 The principal’s program is

\[
\max_{(y(\theta), w(y))} E[f(\theta, y(\theta)) - w(y(\theta))] \tag{10}
\]

s.t. (IC) and (IR).

\(^{11}\)One could also allow for type-dependent reservation utilities. For the purposes of our results on the additional restrictions imposed by screening, we can always adjust the cost function to avoid countervailing incentives.
Proposition 1 states that the space of incentive-compatible mechanisms is characterized by conditions (1), (2) and (3) under Assumption 1. Define the agent’s informational rent given an incentive-compatible mechanism \((y(\theta), w(y))\) as
\[
r(\theta) \equiv w(y(\theta)) - c(\theta, y(\theta)).
\] (11)
Applying the Envelope Theorem (see Milgrom and Segal, 2002), we obtain the following condition:
\[
\nabla r(\theta) = -\nabla_{\theta} c(\theta, y(\theta)),
\] (12)
which is equivalent to (1), where \(\nabla\) is the gradient operator.

In order to solve the principal’s program, we follow the standard approach of considering first a relaxed program which ignores some of the constraints. Then, we state conditions that ensure that the constraints that we have ignored do not bind so that the solution of the relaxed program is the same as the solution of the principal’s program.

The relaxed program is defined as the maximization of the principal’s profit subject to the agent’s first-order condition and the participation constraint:
\[
\max_{(y(\theta), w(y))} \mathbb{E}[f(\theta, y(\theta)) - w(y(\theta))]
\text{s.t.} (1) \text{ and } (\text{IR}).
\]
Therefore, it does not take into account the local second-order conditions (2) and the global conditions (3). In the remainder of this section, we analyze the one-dimensional and the multidimensional cases separately.

4.1 The one-dimensional case

In this subsection, we study the implications of screening in the one-dimensional case. We obtain a new necessary and sufficient condition for a mechanism to be a solution to a screening model. This new condition, which does not depend on the single-crossing condition, states that the principal’s profit must increase at a higher rate under asymmetric information than in the symmetric information case. Equivalently, it identifies the regions where the principal’s profit is increasing and decreasing in the activity \(y\) chosen by the agent.

Suppose that the type space is \(\Theta = [\underline{\theta}, \bar{\theta}] \subset \mathbb{R}\). Note that Assumption 0 implies that the informational rent is increasing in the agent’s type. Therefore, the participation constraint (IR) is satisfied if and only if \(r(\theta) \geq 0\). Furthermore, in the solution to Program (10) it must be the case that \(r(\theta) = 0\).

Integrating (12), the agent’s informational rent can be written as
\[
r(\theta) = r(\bar{\theta}) - \int_{\underline{\theta}}^{\theta} c_{\theta}(\bar{\theta}, y(\bar{\theta})) d\bar{\theta}.
\]
Applying integration by parts, we obtain
\[
\mathbb{E}[w(y(\theta))] = r(\underline{\theta}) + E \left[c(\theta, y(\theta)) - \frac{1 - P(\theta)}{p(\theta)} c_{\theta}(\theta, y(\theta)) \right],
\]
for every incentive compatible mechanism \((y(\theta), w(y))\).

Substituting into the objective function, the relaxed program becomes:

\[
\max_{(y(\theta), w(y))} \mathbb{E} \left[f(\theta, y(\theta)) - c(\theta, y(\theta)) + \frac{1 - P(\theta)}{p(\theta)} c_{\theta y}(\theta, y(\theta)) \right].
\]

The pointwise first-order condition of the relaxed program is equivalent to

\[
 f_y(\theta, y(\theta)) - c_y(\theta, y(\theta)) + \frac{1 - P(\theta)}{p(\theta)} c_{\theta y}(\theta, y(\theta)) = 0. \tag{13}
\]

This condition shows the usual rent extraction versus distortion trade-off. Instead of setting the marginal valuation equal to the marginal cost, the principal sets it equal to the marginal cost plus the marginal cost of information rents.

For simplicity, suppose that \(w\) is \(C^2\). Taking the total derivative of equation (1) with respect to \(y\) gives:

\[
 w''(y(\theta)) y'(\theta) = c_{y \theta}(\theta, y(\theta)) + c_{y y}(\theta, y(\theta)) y'(\theta).
\]

Thus, (13) can be written as

\[
 f_y(\theta, y(\theta)) - w'(y(\theta)) + \frac{1 - P(\theta)}{p(\theta)} [w''(y(\theta)) - c_{y y}(\theta, y(\theta))] y'(\theta) = 0. \tag{14}
\]

Note that the (necessary) local second-order condition of Program (IC) is \(w''(y(\theta)) - c_{y y}(\theta, y(\theta)) \leq 0\). Substituting from equation (14), it follows that

\[
 [f_y(\theta, y(\theta)) - w'(y(\theta))] y'(\theta) \geq 0, \text{ for all } \theta \in \Theta, \tag{15}
\]

since the hazard rate is always positive.

Condition (15) has a natural interpretation in terms of the principal’s profit: \(\pi(\theta) \equiv f(\theta, y(\theta)) - w(y(\theta))\). Under symmetric information, we have \(\pi'(\theta) = f_\theta(\theta, y(\theta))\). Differentiating the profit function, we obtain:

\[
\pi'(\theta) = f_\theta(\theta, y(\theta)) + [f_y(\theta, y(\theta)) - w'(y(\theta))] y'(\theta) \geq f_\theta(\theta, y(\theta)),
\]

where the inequality uses equation (15). Therefore, under asymmetric information, the principal’s profit increases at a greater rate than the increase in productivity. Note that this result is quite general in that it does not depend on any assumptions on the cost function except for it being increasing in \(y\) and decreasing in \(\theta\) and the assumption that types are one-dimensional.

Condition (15) can also be interpreted as giving the effect of \(y\) on the principal’s profit. From condition (2), it can be written as:

\[
 f_y(\theta, y(\theta)) \left\{ \begin{array}{c} \geq \vspace{0.5cm} \leq \end{array} \right\} w'(y(\theta)) \iff c_{y \theta}(\theta, y(\theta)) \left\{ \begin{array}{c} \leq \vspace{0.5cm} \geq \end{array} \right\} 0. \tag{16}
\]

Thus, the profit must be increasing in the activity \(y\) in the region where the type decreases the marginal cost of the activity (controlling for the type \(\theta\)).\(^{12}\) Conversely, the profit must

\(^{12}\)By ‘controlling for the type’, we mean the effect on the profit if an agent chose a different amount of activity \(y\). Of course, in equilibrium we only observe one action for each type: \(y = y(\theta)\).
be decreasing when types increase the marginal cost of the activity y. In the standard case where $c_{yy} < 0$ (the single-crossing condition is satisfied), it implies that the principal’s profit is decreasing in the activity y controlling for the agent’s type.

The previous argument shows the necessity of condition (15). It turns out that this condition is also sufficient to rationalize any incentive-compatible mechanism as the solution of the principal’s program when Assumption 1 is satisfied:

Theorem 3 Suppose $\Theta \subset \mathbb{R}$. Let $y(\cdot)$ be a regular function and let $w(\cdot)$ be a positive C^2 function. There exists a C^1 cost function satisfying Assumption 1 and a distribution of types p for which $(y(\cdot), w(\cdot))$ is the optimal mechanism if and only if $w(\cdot)$ is strictly increasing and condition (15) is satisfied.

Proof. (\Rightarrow) Follows from the preceding argument and Theorem 1.

(=) Let $(y(\theta), w(y))$ be a mechanism satisfying the conditions of the theorem. Take the cost function of the proof of Theorem 1. Then, the mechanism satisfies incentive-compatibility and equation (13) becomes:

$$f_y(\theta, y(\theta)) - w'(y(\theta)) + \frac{1 - P(\theta)}{p(\theta)} = 0. \quad (17)$$

Hence, by (15) we can then define the following function:

$$P(\theta) = 1 - A \times \exp \left[\int_\theta^\infty \frac{K - w''(y(t))}{y'(\theta)} y'(t) dt \right],$$

where A is chosen such that $P(\theta) = 0$. It is easy to see that $P(\cdot)$ is a cumulative distribution function which satisfies (17). Note that for such economy the second-order condition of the relaxed functional holds if and only if

$$f_{yy}(\theta, y(\theta)) - K \leq 0.$$

Therefore, choosing K with this property we conclude that $(y(\theta), w(y))$ is the solution of the principal’s program.\(^{13}\) □

4.2 The multidimensional case

As in McAfee and McMillan (1988) and Rochet (1987), this subsection obtains necessary and sufficient conditions for implementability and optimality in a multidimensional screening model. The implementability result follows straight from Proposition 1, which characterizes the set of incentive-compatible mechanisms under Assumption 1. In this subsection, we use this result to characterize the optimal mechanism.

In general, the first main difficulty in multidimensional screening is to deal with the integration of equation (12). For this we will follow the approach proposed by Armstrong (1996).

\(^{13}\)We can choose a cost function such that the marginal cost is always positive whenever $f_{yy}(\theta, y(\theta)) < w'(y(\theta)).$ A sufficient condition is that w is more concave than $f(\theta, \cdot)$ for all θ, i.e., $f_{yy}(\theta, y) < w''(y)$ for all $y \geq 0$ (see the proof of Theorem 1).
Assume that ϑ = ℝ^n. Under Assumption 0, the informational rent (11) is increasing in the agent’s type. Since 0 ∈ ϑ, the participation constraint is satisfied if and only if r(0) ≥ 0 so that, in the solution to program (10), we must have r(0) = 0.

Consider the expected value of the agent’s informational rent:

\[R = \int_{\Theta} r(\theta)p(\theta)d\theta. \]

Define the function \(v : [0, 1] \rightarrow \mathbb{R} \) by \(v(t) = \int_{\Theta} r(t\theta)p(\theta)d\theta \). Then, it follows that \(v'(t) = \int_{\Theta} \theta \cdot \nabla r(t\theta)p(\theta)d\theta \), where \(\cdot \) denotes the inner product. Because \(r(0) = 0 \), we have \(v(0) = 0 \) and \(v(1) = R \).

Since \(v(1) - v(0) = \int_{\Theta} v'(t)dt \), it follows that

\[R = \int_0^1 \left(\int_{\Theta} \theta \cdot \nabla r(t\theta)p(\theta)d\theta \right) dt. \tag{18} \]

The envelope condition (12) implies that \(R = -\int_0^1 \left(\int_{\Theta} \theta \cdot \nabla_\theta c(t\theta, y(t\theta))p(\theta)d\theta \right) dt. \) For each \(t > 0 \), we apply the change of variables \(\eta = t\theta \), which takes \(\Theta \) into itself. Under this transformation, the term \(\frac{\partial c}{\partial \theta_i}(t\theta, y(t\theta)) \) becomes

\[\frac{1}{t}\eta_i \frac{\partial c}{\partial \eta_i}(\eta, y(\eta)). \]

Then, the integral with respect to \(\theta \) in equation (18) can be transformed according to

\[\int_{\Theta} \theta \cdot \nabla_\theta c(t\theta, y(t\theta))p(\theta)d\theta = t^{-n-1} \int_{\Theta} \eta \cdot \nabla_\eta c(\eta, y(\eta))p\left(\frac{\eta}{t}\right) d\eta, \]

so that the expected informational rent becomes

\[R = -\int_{\Theta} \eta \cdot \nabla_\eta c(\eta, y(\eta)) \left(\int_0^1 t^{-n-1}p\left(\frac{\eta}{t}\right) dt \right) d\eta. \]

Finally, letting \(\tau = 1/t \) and defining \(q(\eta) = \int_1^\infty \tau^{n-1}p(\tau\eta)d\tau \), we obtain

\[R = -\int_{\Theta} \eta \cdot \nabla_\eta c(\eta, y(\eta))q(\eta)d\eta. \]

Substituting \(R \) back into the principal’s objective function, we obtain the following relaxed maximization problem

\[\max_{y(\cdot)} E \left[f(\theta, y(\theta)) - c(\theta, y(\theta)) + \theta \cdot \nabla_\theta c(\theta, y(\theta)) \frac{q(\theta)}{p(\theta)} \right], \tag{RP} \]

where the expectation operator is taken with respect to the probability measure defined by the density \(p(\theta) \).

The procedure used to derive the expression above is known as integration along rays. It only takes into account the constraints (1) along rays. The term inside the expectation is the virtual surplus. It consists of the first-best social surplus \(f(\theta, y(\theta)) - c(\theta, y(\theta)) \) plus the distortion needed to prevent deviations along rays \(\theta \cdot \nabla_\theta c(\theta, y(\theta)) \frac{q(\theta)}{p(\theta)} \) (which is negative because \(c_{\theta_i}(\theta, y) < 0 \)).

14 In this subsection, \(\Theta \) is unbounded.
Remark 3 Armstrong (1996), assuming homogeneity of utility function with respect to the parameter and separability of the agent’s “cost-based” indirect utility, can characterize the optimal “cost-based” tariff. With an additional separability condition on the density function which depends directly on the endogenous separability of the indirect utility, he can also show that this tariff is optimal over all tariffs. McAfee and McMillan (1988), on the other hand, generalize the single-crossing condition for the multidimensional case. However, this condition is so restrictive that implies the shadow price indifference curves to be hyperplanes.

Although we are restricted to quadratic utility functions with respect to the decision variable, we do not have any homogeneity and separability assumptions. Moreover, the marginal cost indifference curves may not be hyperplanes so that we do not assume the generalized single-crossing condition. That is, our setup is not contained neither in Armstrong (1996) nor in McAfee and McMillan (1988).

The following lemma will be useful to characterize economies that satisfy Assumption 1.

Lemma 4 Fix an economy such that the cost function is convex. A profile $y(\cdot)$ satisfies conditions (2) and (3) if and only if there exists a non-increasing $\bar{y} : \gamma(\Theta) \to \mathbb{R}$ such that $y(\theta) = \bar{y} \circ \gamma(\theta)$, where $\gamma(\theta) = c_y(y(\theta), \theta)$, for all $\theta \in \Theta$.

Proof. (\implies) Let us check conditions (2) and (3). We have that

$$c_{y\theta_i}(y(\theta), \theta) y_{\theta_i}(\theta) = c_{y\theta_i}(y(\theta), \theta) \bar{y}'(\gamma(\theta)) \gamma_{\theta_i}(\theta)$$

$$= c_{y\theta_i}(y(\theta), \theta) \bar{y}'(\gamma(\theta))[c_{yy}(y(\theta), \theta)y_{\theta}(\theta) + c_{y\theta_i}(y(\theta), \theta)]$$

which implies that

$$[1 - c_{yy}(y(\theta), \theta)\bar{y}'(\gamma(\theta))] c_{y\theta_i}(y(\theta), \theta)y_{\theta_i}(\theta) = [c_{y\theta_i}(y(\theta), \theta)]^2 \bar{y}'(\gamma(\theta)).$$

Since $c(y, \theta)$ is convex and $\bar{y}(\cdot)$ is non-increasing, (2) holds.

Let $\theta, \tilde{\theta} \in \Theta$ be such that $y(\theta) = y(\tilde{\theta})$. Since $\bar{y}(\cdot)$ is decreasing, $\gamma(\theta) = \gamma(\tilde{\theta})$ and, then $c_y(y(\theta), \theta) = c_y(y(\tilde{\theta}), \theta)$ or

$$c_y(y(\theta), \theta) = c_y(y(\theta), \tilde{\theta}).$$

Hence, (3) holds.

(\impliedby) Suppose that conditions (2) and (3) hold. From condition (3),

$$y(\theta) = y(\tilde{\theta}) \implies \gamma(\theta) = \gamma(\tilde{\theta}),$$

for all $\theta, \tilde{\theta} \in \Theta$. This means that the indifference curve of $y(\cdot)$ are contained in the indifference curves of $\gamma(\cdot)$. Using condition (2) we have, through radial directions, that

$$y(\theta) > y(\tilde{\theta}) \implies \gamma(\theta) \leq \gamma(\tilde{\theta}),$$

for all $\theta, \tilde{\theta}$ in a given radius from 0. Again using (3), the last inequality holds in all Θ. Applying the representation theorem for preferences, there must exist a non-increasing $\bar{y} : \gamma(\Theta) \to \mathbb{R}$ such that $y(\theta) = \bar{y} \circ \gamma(\theta)$, for all $\theta \in \Theta$. ■
Therefore, the previous lemma and Proposition 1 imply that $y(\theta)$ is implementable by $w(y)$ if and only if (1) holds and there exists a non-increasing function $\tilde{y}(\gamma)$ such that $y(\theta) = \tilde{y}(\gamma(\theta))$, where $\gamma(\theta) = c_y(y(\theta), \theta)$, for all $\theta \in \Theta$. Then, there is no loss of generality in considering the indirect mechanism where the message space corresponds to the set of possible marginal costs of taking the action y. Each type reveals its marginal cost of taking the prescribed action $\gamma(\theta)$, takes the action $\tilde{y}(\gamma(\theta))$, and receives a transfer of $w(\tilde{y}(\gamma(\theta)))$.

By the law of iterated expectation the first-order condition of Program (RP) is

$$E[f_y(\theta, \tilde{y}(\gamma))|\gamma] - \gamma + E\left[\theta, \nabla_\theta \gamma(\theta) \frac{q(\theta)}{p(\theta)} |\gamma\right] = 0.$$ \hspace{1cm} (FOCRP)

Suppose that there exists an implicit decreasing solution of (FOCRP), $\tilde{y}^*(\gamma)$.15 If $f(\theta, \cdot)$ is a concave function, then $\tilde{y}^*(\gamma(\theta))$ is the optimal solution of the problem (RP).

We then have following result, which is complementary to the one obtained by Armstrong (1996):

Proposition 3 Let an economy be defined by a concave valuation function and a convex cost function satisfying Assumption 1. If the first-order condition of the relaxed maximization problem (FOCRP) defines a decreasing function, it is the optimal mechanism.

Equation (FOCRP) has an intuitive interpretation in terms of projections. The unrestricted optimum of Program (RP) is the pointwise maximization of the virtual surplus. However, this solution may not satisfy conditions (2) and (3). From Lemma 4, any profile of actions that satisfies these conditions can be written as an indirect profile that is a function of marginal costs $\gamma(\theta)$. Then, condition (FOCRP) states that the solution of the principal’s program is to project the first-order condition of the unrestricted program on the space of marginal costs.

Let us illustrate the previous proposition with the following examples:

Example 4 (One-dimensional model) If Θ is an interval in \mathbb{R}, then the first-order condition (FOCRP) reduces to the classical first-order condition of the unidimensional relaxed problem. Indeed, under the single-crossing property (i.e., $c_{\gamma \theta} \leq 0$) and the convexity of the cost function (i.e., $c_{yy} \geq 0$), $\gamma(\theta)$ is a decreasing function once implementable decisions are non-increasing. In this case, we can make a change of variable from γ to θ and obtain the usual pointwise optimal condition of the relaxed program. Without single-crossing, one can show that condition (FOCRP) reduces the characterization of the optimal U-shaped condition associated to the necessary implementable condition (3) given in Araujo and Moreira (2001).

Example 5 (Multidimensional screening) Suppose that $n \geq 2$. To simplify matters let us assume that the distribution function is homogeneous of degree α and the cost function is homogenous of degree β on θ (Armstrong (1996) assumes $\beta = -1$). Moreover,

15If this relaxed solution does not satisfy the monotonicity condition one has to perform the usual “ironing principle” (see Mussa and Rosen, 1978). Notice that since $y(\gamma)$ is one-dimensional function, this is straightforward exercise.
suppose that the valuation function depends only on \(y \). In this case the first-order condition (FOCRP) leads to

\[
f'(y^*(\gamma)) - \gamma - a \beta \gamma = 0
\]

where \(q(\theta) = p(\theta) \int_1^\infty \tau^{\alpha+n-1}d\tau = ap(\theta) \) and \(a = \int_1^\infty \tau^{\alpha+n-1}d\tau < \infty \) if \(\alpha < 2 - n \). By condition (1) this condition, after multiplying by \(y''(\gamma) \) can also be written as

\[
[f'(y^*(\gamma)) - w'(y^*(\gamma))]y''(\gamma) = a \beta \gamma y''(\gamma) \geq 0
\]

when \(\beta < 0 \), which has an analogous interpretation of condition (15).

Reciprocally, for each mechanism \((y(\cdot); w(y))\) we are able to find an economy such that the mechanism is a pointwise optimum of Program (RP). This is formally stated in the following theorem:

Theorem 4 Let \(y : \Theta \to \mathbb{R}_+ \) be a regular function and \(w(y) \) be a positive \(C^2 \) function such that \(w''(y) \) is bounded. There exist a valuation function linear in \(y \), a \(C^1 \) cost function satisfying Assumptions 0 and 1 and distribution of types for which \((y(\cdot), w(y))\) is the optimal mechanism if and only if \(w(y) \) is strictly increasing.

Proof. (\(\Rightarrow \)) Follows from an adaptation of Theorem 1 given that \(w''(y) \) is bounded.

(\(\Leftarrow \)) Let \((y(\theta), w(y))\) be a mechanism satisfying the conditions of the Theorem. Applying Theorem 1, we can find a cost function satisfying Assumptions A0 and A1 such that this mechanism is incentive compatible. Notice that \(\gamma(\theta) = w'(y(\theta)) \). Take a density \(p \) over \(\Theta \) that is homogeneous of degree \(\alpha < 2 - n \). Hence, the point-wise maximization of (RP) is equivalent to setting \(f(\theta, y) = \pi(\gamma)y \) such that

\[
\pi(\gamma) = \gamma - aE[\theta, \nabla \gamma(\theta)|\gamma]
\]

satisfies equation (FOCRP) which is necessary and sufficient for optimality.

Therefore, when the valuation function is also a function of the agent’s type \(\theta \), the screening model imposes no additional restrictions. The only restriction on the space of mechanisms \((y(\cdot), w(\cdot))\) is the monotonicity of \(w \), which is implied by incentive-compatibility.

5 Conclusion

This paper characterized the set of incentive-compatible allocations when the single-crossing condition is not satisfied. Then, using the characterization, we studied the restrictions imposed by incentive-compatibility on the set of mechanisms. It was shown that the only implication was the monotonicity of transfers in actions.

When we impose that the allocation must result from the equilibrium of a signaling model, the zero-profit condition also implies that transfers must be in the convex hull of valuations in each set of pooled types. We have also imposed a selection criterion that requires some type to choose a zero amount of signal.

Any differentiable profile of actions and transfers satisfying these conditions was shown to be an equilibrium of some economy. Most implications of signaling models arise from
assumptions of the cross-partial derivative of the cost of signaling function. Since we do not, in general, have a precise knowledge of the cost of signaling function, we cannot obtain other robust testable predictions of the model. Furthermore, there exists a large class of signaling models that generate the same profiles of signals and wages as an equilibrium. Thus, one cannot employ a signaling model to estimate the distribution of types or the costs of signaling without additional restrictions.

When considering a screening model where valuations are type-independent, we obtain a new necessary and sufficient condition on the principal’s profit. We have shown that asymmetric information leads to a higher rate of growth of the principal’s profit. However, this condition no longer holds when valuations are type-dependent.

References

