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Abstract

We complement the analysis in Braido and Martins-da-Rocha (Forthcom-
ing) by showing the existence of a competitive equilibrium in a model with a
continuum of identical firms and perfectly correlated success-or-failure shocks.

Consider an economy with a single firm which chooses an investment in the

set A := [0, 1] and faces a success-or-failure production function. Two production

levels are possible, yl > 0 and yh > yl. The transition Q(y, a) stands for the

probability of producing y when the firm invests a. Since there are only two possible

output levels, we can simplify the notation by setting Qh(a) := Q(yh, a). We make

the assumption that higher efforts increase the likelihood of success, i.e., a 7→ Qh(a)

is strictly increasing.

There is a canonical state-of-nature representation of this technology. We take

the set Ω to be the interval [0, 1] and the probability P to be the uniform measure.

For every investment level a, we define ω(a) := 1−Qh(a) and pose

f(ω, a) :=

{
yl if ω 6 ω(a)

yh if ω > ω(a).
(1)

Since a 7→ ω(a) is strictly decreasing, we denote by ω 7→ a(ω) its inverse mapping

from [ω(1), ω(0)] to [0, 1]. For each state of nature ω ∈ [ω(1), ω(0)], the firm obtains

the output

f(ω, a) =

{
yl if a 6 a(ω)

yh if a > a(ω).
(2)



For states ω < ω(1) and ω > ω(0), the realized outputs are respectively yl and yh

regardless of the initial investment a.

This production function a 7→ f(ω, a) is not concave. Then, for some speci-

fications of f , there is no financial equilibrium in which the firm maximizes the

competitive market value. To overcome the non-convexity of the success-or-failure

technology, we propose to model perfect competition of the productive sector by

considering the extreme case with a continuum K := [0, 1] of identical firms facing

success-or-failure shocks that are perfectly correlated. This assumption is imposed

to simplify the presentation.1

We pose a few remarks before proceeding. We first notice that the presence of

a continuum of firms is consistent with our behavioral assumption that agents are

convinced that a change in the investment of each firm does not affect the proba-

bility over the aggregate output. We also stress that shocks are not independent

across firms. Independence would reduce the model to the case without aggregate

uncertainty, where the choice of the firms’ objective is not anymore an issue. The

assumption that shocks are perfectly correlated allows us to keep output variability

at equilibrium, which resembles the case with a single firm. Finally, shocks are not

necessarily observable and contractible even when they affect all firms identically.2

We abuse notation and do not index firm-specific variables with the firm’s

name k ∈ [0, 1]. Since the production function of each firm is non-convex, we

may have multiple solutions to the “representative” firm’s maximization problem.

In particular, ex-ante identical firms having different names may choose different

investment levels. Therefore, we opt to represent firms’ investment decisions us-

ing a probability measure α on the Borel σ-algebra of the set of investment lev-

els A = [0, 1]. The interpretation is that α(B) is the fraction of firms choosing

investment in a Borel set B of A. The corresponding (average) aggregate produc-

tion contingent on the exogenous state of nature ω is denoted by Eα[f(ω)]. It follows

1At the cost of notational complexity, we could have considered a slightly more general model
allowing for different firms with imperfectly correlated production levels. For existence of an equi-
librium, what matters to deal with non-convex production technologies is that we have a non-atomic
measure space of firms.

2Examples of aggregate shocks include changes in a government’s macroeconomic policy such
as taxes and social security contributions on labor. Another possible aggregate shock is a general
increase in labor productivity because of an easily accessible improvement in technological knowl-
edge. Political instabilities in the Middle East that lead to changes in oil production or technological
innovations in solar energy production are also examples of shocks affecting all firms. We hardly
see contracts contingent on events like these.
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from the production function represented in Equation (2) that

Eα[f(ω)] =

∫
A
f(ω, a)α(da) = ylα([0, a(ω)]) + yh(1− α([0, a(ω)])). (3)

Since we have infinitely many possible primitive states of nature ω, the set Z of

aggregate production levels is now described by the interval [yl, yh].3

Given a distribution α of investment, we can define the distribution µα over the

(average) aggregate production as follows

µα(B) := P ({ω ∈ Ω : Eα[f(ω)] ∈ B}),

for every Borel set B ⊆ [yl, yh]. Having infinitely many firms, we need to consider

infinitely many consumers. We assume that there is also a continuum I := [0, 1] of

identical consumers, each one having the full ownership of a single firm. We also

skip using names i to index consumer-specific variables.

Fix some equilibrium investment distribution ᾱ. Identical firms must have the

same equilibrium initial value V . We can assume without loss of generality that

agents pool their asset holdings and make consumption plans x0 ∈ R+ and c1 : Z →
R+ in order to satisfy the following reduced-form budget constraint

x0 +

∫
Z
c1(z)ρ̄(dz) 6 e0 + V , (4)

where ρ̄ is the equilibrium measure representing output-contingent prices. Each

agent’ problem has a unique optimal solution (x̄0, c̄1) in which c̄1(z) = z and x̄0 =

e0 − ā.

In order to simplify the exposition, we assume hereafter that u0 is a linear

function with u′0 = 1. The equilibrium stochastic discount factor becomes χ̄(z) =

u′1(z). Firms maximize the same competitive market value function

Vᾱ(a) :=

∫
Z
ỹᾱ(a|z)ρ̄(dz)− a,

where

ỹᾱ(a|z) :=

∫
Ω
fk(ω, a)P (dω|Eᾱ[f ] = z)

3This illustrates that, when firms’ outputs are not independent, considering a continuum of
firms does not remove aggregate uncertainty. In fact, here, it potentially increases the set of
possible aggregate outcomes.
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is the conditional expected production under the investment distribution ᾱ given an

(average) aggregate output z. In equilibrium, firms may choose different investment

levels, but they will all have the same market value V . Formally, if we denote by

supp(ᾱ) the support of the equilibrium investment distribution ᾱ, then we have

V (a) = V , for every investment a ∈ supp(ᾱ) and V (a) 6 V , for a /∈ supp(ᾱ). We

can then write firms’ competitive market value as follows:

Vᾱ(a) =

∫
Z
χ̄(z)

∫
Ω
fk(ω, a)P (dω|Eᾱ[f ] = z)µᾱ(dz)− a

=

∫
Ω
χ̄ (Eᾱ[f(ω)]) f(ω, a)P (dω)− a.

Given the production function represented in Equation (1), we obtain

Vᾱ(a) = yl

∫ ω(a)

0
χ̄ (Eᾱ[f(ω)])P (dω) + yh

∫ 1

ω(a)
χ̄ (Eᾱ[f(ω)])P (dω)− a. (5)

Smooth probabilities Let us now compute an equilibrium distribution ᾱ for the

production technology in which a 7→ Qh(a) is decreasing, continuously differentiable

and satisfies Q′h(0) =∞ and Q′h(1) = 0.4 Recall that ω(a) := 1−Qh(a) and notice

that, for any a ∈ (0, 1), we have

V ′ᾱ(a) = Q′h(a)χ̄ (Eᾱ[f(ω(a))]) ∆y − 1,

where ∆y := yh − yl.
Since Q′h is continuous, there are limits b and b̄ with 0 < b < b̄ < 1 such that

Q′h(b)χ̄(yh)∆y = 1 and Q′h(b̄)χ̄(yl)∆y = 1. (6)

Moreover, since χ̄(z) = u′1(z) is continuously decreasing, there is a continuously

decreasing function a 7→ ϕ(a) such that

∀a ∈ [b, b̄], Q′h(a)χ̄(ϕ(a))∆y = 1.

Naturally, we have ϕ(b) = yh and ϕ(b̄) = yl.

4This corresponds to the production technology for which we do not have existence with a single
firm.
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Let us define the distribution ᾱ to be such that

ϕ(a) = ylᾱ([0, a]) + yh(1− ᾱ([0, a])).

Since the function ϕ is continuous, the distribution ᾱ is non-atomic. Indeed, for

every a ∈ [b, b̄], we have

ᾱ[0, a] = (yh − ϕ(a))/∆y,

where ϕ(a) = χ̄−1
(

−1
Q′

h(a)∆y

)
. No firm chooses investment levels lower than b or

higher than b̄. It is easy to see that the distribution ᾱ has been constructed in

order to set V ′ᾱ(a) = 0, for all a ∈ [b, b̄]. Notice also that V ′ᾱ(a) > 0, for a < b

and V ′ᾱ(a) < 0, for a > b̄. This concludes our argument and proves that ᾱ is a

competitive equilibrium investment profile for this economy.

Remark. Notice from Equation (6) that the smaller the distance between χ̄(yh)

and χ̄(yl), the narrower the interval [b, b̄]. In particular, as u1 approaches a linear

function, we find b converging to b̄ and ᾱ converging to a Dirac measure (symmetric

equilibrium). Aggregate uncertainty in this situation closely approximates the case

with a single firm—in which the (average) aggregate output is either yl or yh.

General existence theorem We can relax the assumptions on the transition

probabilityQh and still obtain the existence result for economies with a continuum of

firms facing perfectly correlated shocks. The reasoning is somewhat more technical.

Let M(A) be the vector space of signed Borel measures on A = [0, 1]. An

investment decision is a distribution α inM1
+(A) the set of all positive measures with

total mass 1. We make explicit the relation between α and each firm’s competitive

market value Vα(a) by defining

Vα(a) :=

∫
Ω
m̄α(ω)f(ω, a)P (dω)− a,

where m̄α(ω) := χ̄(Eα[f(ω)]) . We also denote by G(α) the set of optimal investment

levels

G(α) := argmax{Vα(a) : a ∈ A}.

A distribution of investment ᾱ corresponds to an equilibrium in which firms max-

imize the competitive market value when it only puts mass on optimal investment

levels, i.e., when ᾱ(G(ᾱ)) = 1.
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Theorem. There exists a competitive equilibrium distribution of investments.

Proof. Let F :M1
+(A)→M1

+(A) be the correspondence defined by

F (α) := {α̂ ∈M1
+(A) : α̂(G(α)) = 1}.

A competitive equilibrium is a distribution ᾱ of investment levels that is a fixed

point of F , i.e., ᾱ ∈ F (ᾱ).

We propose to apply Kakutani’s Fixed-Point Theorem. The convex set M1
+(A)

is endowed with the weak-star topology of the duality 〈M(A), C(A)〉, where C(A)

is the space of continuous real-valued functions defined on A. Since C(A) endowed

with the sup-norm is separable and since M(A) is the topological dual of C(A), we

get that M1
+(A) is a compact metrizable space.

Lemma 1. The correspondence G :M1
+(A)→ A is upper semi-continuous for the

weak-star topology.

Proof of Lemma 1. Following Berge’s Maximum Theorem, it is sufficient to show

that (a, α) 7→ Vα(a) is continuous. Let (an, αn)n∈N be a sequence in A×M1
+(A) con-

verging to (a, α) ∈ A×M1
+(A). We first show that limn→∞ Eαn [f(ω)] = Eα[f(ω)],

for P -almost every state ω. Notice that

Eαn [f(ω)] = αn(ω)yl + (1− αn(ω))yh = yl + [yh − yl](1− αn(ω)),

where αn(ω) = αn([0, a(ω)]) is the measure of the interval [0, a(ω)]. Since (αn)n∈N

converges for the weak-star topology to α, we have

lim
n→∞

αn([0, a]) = α([0, a]),

for every a ∈ A that is not an atom of α, i.e., for every a such that α({a}) = 0.

Since there are at most countably many atoms of α and since ω 7→ a(ω) is strictly

increasing, we obtain limn→∞ αn(ω) = α(ω), for P -almost every ω. This implies

that limn→∞ Eαn [f(ω)] = Eα[f(ω)]. By continuity of u′1, we find

lim
n→∞

mαn(ω) = mα(ω),

for P -almost every state ω.
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We now show that limn→∞ Vαn(an) = Vα(a). Recall that

Vαn(an) = −an +

∫
Ω
mαn(ω)f(ω, an)P (dω).

Since limn→∞ f(ω, an) = f(ω, a), for P -almost every ω, we can apply the Lebesgue

Dominated Convergence Theorem to obtain the desired result.5

Lemma 2. The correspondence F is upper semi-continuous for the weak-star topol-

ogy.

Proof of Lemma 2. Since M1
+(A) is compact, it is sufficient to show that F has a

closed graph. Let (α′n, αn)n∈N be a sequence converging to (α′, α) and satisfying

α′n ∈ F (αn) for each n. Since G(α) is compact, there exists an open set K and

compact set K̄ such that

G(α) ⊆ K ⊆ K̄.

Since G is upper semi-continuous, there exists N large enough such that for each

n > N , we have G(αn) ⊆ K. In particular, α′n(K̄) = 1. Since (α′n)n∈N converges

for the weak-star topology to α′ we get that α′(K̄) > lim supn α
′
n(K̄) = 1. We

have thus proven that α′(K̄) = 1. Actually, we can construct a decreasing sequence

(Kn, K̄n)n∈N where Kn is open, K̄n is compact, G(α) ⊆ Kn ⊆ K̄n and ∩n∈NK̄n =

G(α). It then follows that α′(G(α)) = 1.

The correspondence F has non-empty values. Indeed, since the function a 7→
Vα(a) is continuous and A is compact, the demand set G(α) is always non-empty.

If â is an element of G(α), then the Dirac measure on â belongs to F (α). Since

by construction the correspondence F has convex values, we can apply Kakutani’s

Fixed-point Theorem to the correspondence F .
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