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Abstract

I present a model of observational learning with payoff interdependence. Agents,

ordered in a sequence, receive private signals about an uncertain state of the world

and sample previous actions. Unlike in standard models of observational learning, an

agent’s payoff depends both on the state and on the actions of others. Agents want

both to learn the state and to anticipate others’ play. As the sample of previous ac-

tions provides information on both dimensions, standard informational externalities

are confounded with coordination motives. I show that in spite of these confounding

factors, when signals are of unbounded strength there is learning in a strong sense:

agents’ actions are ex-post optimal given both the state of the world and others’ ac-

tions. With bounded signals, actions approach ex-post optimality as the signal struc-

ture becomes more informative.
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1. Introduction

In several economic environments, the utility of an agent is affected both by some un-

certain state of the world and by the actions of others. Consider a brand new operating

system, of unknown quality. Each consumer cares not only about its quality, but also

about whether others will adopt it. A consumer who considers buying the new system

does not know how many after him will also adopt it, and may not know exactly how

many before him have already adopted it. Alternatively, consider a farmer who must de-

cide to plant either corn or soybeans at the start of the season but is uncertain about their

relative demand by the end of the season. Even though he does not know what other

farmers will choose, the choices of others affect the relative profitability of each crop: if

most farmers plant corn, then the price of corn will be lower, and so it is more profitable

to plant soybeans. Similar stories apply to investment in assets with unknown funda-

mentals, voting, contributions to public goods of uncertain quality, network congestion,

and many other environments.

By observing a sample of the actions of others, an agent obtains information both

about the state of the world and about how others behave. The farmer deciding between

crops may have private information on how the demand will be at the end of the season.

He may also observe the decisions of some of his neighbors. With these two sources of

information he must form beliefs about both the future demand and about the actions

of those farmers he does not observe. With payoff externalities, standard informational

externalities are confounded with coordination motives. When a farmer observes that

one of his neighbors plants corn, this might mean that his neighbor believes corn to be

in high demand, as in standard models of observational learning. It may also mean that

most farmers are planting corn.

I study the outcomes of observational learning in large games. In the standard setup

of observational learning, (complete) learning has a simple definition: the fraction of

adopters of the superior action must approach one. When payoffs depend on others’

actions, the right action depends not only on the state of the world, but also on what oth-

ers do. I focus then on whether realized actions are ex-post optimal. I say that strategic
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learning occurs when agents’ actions are ex-post optimal given both the state of the world

and the realized actions of others. The main message of this paper is simple:

Proposition 2. Strategic learning occurs, provided that the signal structure is suffi-

ciently informative.

The notion of strategic learning is demanding: it requires that agents not only learn about

the state of the world, but also that they correctly anticipate others’ actions and best re-

spond to them. In what follows I describe the framework and I present the intuition

behind this result.

Agents are exogenously ordered in a sequence and are uncertain about their position

in it. There are two, a priori equally likely, states of the world. Each agent receives a

private signal about the underlying state of the world and observes the actions of some of

his predecessors. Then, he makes a once-and-for-all decision between two actions (zero

and one). The main innovation with respect to the standard setup is that an agent’s pay-

off depends not only on his own action and the unknown state of the world, but also

on the proportion X of agents who choose action one My framework applies to the exam-

ples described before (coordination games, like the adoption of a new operating system,

and anti–coordination games, like the example of farmers). I do not impose any particular

functional form on how payoffs depend on X.

Payoff interdependence adds a strategic consideration to observational learning: each

agent understands that since his own action is observed by some of his successors, it

partly determines their decisions. An agent who can affect aggregate outcomes needs

to take into account the effect of his decision on others’ actions. Gallice and Monzón

[2016] show that this strategic component can have a strong effect on the aggregate play

when there is a finite number of agents who never make mistakes.1 However, this should

intuitively be less relevant in large games. Individual farmers do not expect to be able to

affect aggregate supply, and individual consumers typically do not believe that they can

determine the overall adoption rate of a new operating system. In this paper I assume

that agents make mistakes with arbitrarily small probability. I show that this implies that

1In Gallice and Monzón [2016], a finite number of agents must decide sequentially whether to contribute
to a public good. Full contribution can occur in equilibrium because agents are uncertain about their posi-
tions and make no mistakes. Each individual agent can determine the realized aggregate outcome.
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agents cannot individually determine the aggregate play.

The intuition behind strategic learning is simple and has two components. First, al-

though each agent could in principle affect aggregate outcomes, in practice there are

no butterfly effects. As the number of agents grows large, each individual’s action has

a smaller effect on the proportion X. Second, as each agent foresees that each action has

a small effect on X, he can treat the proportion X as given. Realized payoffs depend (ap-

proximately) only on the state of the world and his own action. In this sense, I translate

a game of observational learning with payoff externalities into a game of observational

learning without them. Then, I use tools of standard observational learning to show that

strategic learning occurs. I develop this intuition in detail in what follows.

The first main result (Proposition 1) shows that as the number of agents grows large,

the proportion X converges to its expectation in each state of the world. This proposition

addresses two challenges that result from the additional strategic factors associated with

payoff externalities. First, each agent needs to anticipate how others will behave. Second,

each agent may need to account for the effect of his own action on others’ decisions.

I develop a novel approach to show convergence of the proportion X. If the equilib-

rium strategy profile were the same regardless of the number of agents, Proposition 1

would be straightforward. Agents make mistakes with positive probability, so a fixed

strategy profile would create an irreducible and aperiodic Markov Chain over actions.

Thus, a standard ergodic argument would lead to this result. However, as the number

of agents grows, the game changes, so the equilibrium strategy profile varies with the

number of agents. I use a coupling argument to show that any Markov Chain induced by

a strategy profile converges to its stationary distribution. The speed of convergence has a

geometric lower bound which is independent of the particular equilibrium strategy profile.

Thus, the effect of one individual’s action on the proportion X wanes as the number of

agents grows, even with strategy profiles that change with the number of agents. I show

through this argument that the proportion X converges to its expectation. As a direct con-

sequence, no individual agent can affect the aggregate outcome. This result holds true for

all payoff specifications.

The second main result (Proposition 2) explains why strategic learning must occur in
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equilibrium when signals are of unbounded strength. Since the proportion X converges

to its expectation in each state of the world, each agent can anticipate the payoffs he would

get from each action in each state of the world. Optimality considerations limit the pos-

sible combinations of proportions X and payoffs that can occur in equilibrium. To see

this, consider first a long-run outcome where in both states of the world, the payoff from

choosing action one exceeds that from choosing action zero. Any agent who chooses ac-

tion zero regrets it ex-post. Intuitively, an agent could instead choose action one always,

and obtain higher payoffs. It follows that no positive proportion of agents can choose a

dominated action.

The final step in Proposition 2 deals with long-run outcomes where agents want to

choose different actions in different states of the world. I provide an improvement prin-

ciple that applies to environments with payoff externalities. An individual can always

copy a random action from the sample he observes. Moreover, when his private signal is

strong enough, he can go against the observed action, and do (in expected terms) strictly

better than the observed agent. Then, as the number of agents grows large, it must be the

case that either 1) the fraction of agents who choose the superior action approaches one,

or that 2) the extra payoff from choosing the right action approaches zero. In either case,

there is strategic learning.

Proposition 2 provides a unique prediction of play for games with only one Nash

equilibrium (e.g. an anti–coordination game). In the farmers’ example, the proportion

of crops planted correctly matches the demand. If instead there are several equilibria in

each state of the world, Proposition 2 does not select among them. I illustrate this point

through a coordination game (Example 7).

Finally, I show that some degree of information aggregation also occurs with signals

of bounded strength. Lemma 7 presents a notion of bounded strategic learning. Although

actions may be ex-post suboptimal with bounded signals, there is a bound on how far

actions can be from optimality. This bound depends on the information structure, and

approaches zero as signals’ informativeness increases.
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1.1 Related Literature

There is a large literature that studies observational learning, starting from the seminal

contributions of Bikhchandani, Hirshleifer, and Welch [1992] and Banerjee [1992]. In these

papers, a set of rational agents choose sequentially between two actions. An agent’s pay-

off depends on whether his action matches the unknown state of the world, but not on

others’ actions. The actions of others are relevant only because of their informational con-

tent. In Bikhchandani et al. [1992] and Banerjee [1992], each agent knows that his own

signal is not better than the signals others have received. Agents eventually follow oth-

ers’ behavior and disregard their own signals. Then, the optimal behavior of rational

agents can prevent complete learning. Smith and Sørensen [2000] show that when signals

are of unbounded strength, individuals never fully disregard their own information and

complete learning occurs. Monzón and Rapp [2014] present conditions for information

aggregation when agents are uncertain both about their own position in the sequence and

about the positions of those they observe.

Starting with Dekel and Piccione [2000], a line of research focuses on the outcomes

of sequential voting. In Dekel and Piccione [2000], a finite sequence of agents cast votes

between two alternatives. Their focus is on the comparison between simultaneous and

sequential voting. Dekel and Piccione show that any equilibrium of a simultaneous vot-

ing game is also an equilibrium when voting is sequential. In Callander [2007], agents

vote sequentially and care not only about electing the superior candidate, but also about

voting for the winning candidate. Callander shows that a bandwagon eventually starts:

voters ignore their private information and vote for the leading candidate. Ali and Kar-

tik [2012] present a model motivated by sequential voting, but which encompasses the

class of collective preferences: an agent’s utility increases when others choose an action that

matches the unknown state. Ali and Kartik show how herds can arise. My paper differs

from this line of research in several dimensions. First, I allow for payoff externalities that

can be both positive or negative. My model can accommodate both incentives to con-

form, and incentives to go against the crowd. Second, agents observe a sample of past

behavior instead of the whole history of play. Together with position uncertainty and a
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positive probability of mistakes, this implies that agents cannot individually determine

the aggregate outcome. Third, my focus is not on herds, but rather on whether agents are

ex-post satisfied with their action.

Several recent papers have highlighted the importance of payoff externalities in other

environments. Eyster, Galeotti, Kartik, and Rabin [2014] present a model of observational

learning with congestion. As usual, agents want to match their action to the state of the

world. But when previous agents in the sequence choose an action, they make it less

attractive for those coming later. Eyster et al. study whether learning occurs as a function

of congestion costs. Cripps and Thomas [2016] present a model of (possibly informative)

queues. Service to those in the queue is provided only in the good state of the world, but

at an stochastic rate. Cripps and Thomas study the dynamics of the queue. Arieli [2017]

focuses on recurring games: successive generations of agents play the same game. As in

my paper, payoffs depend on the unknown state of the world, and also on the actions of

others. However, payoff externalities are only local: an agent’s utility is affected by the

actions of others in the same generation. Arieli studies when complete learning occurs.

Besides the points already mentioned, my paper differs from Eyster et al. [2014], Cripps

and Thomas [2016] and Arieli [2017] in that an agent’s payoff depends on the actions of

those before and also after him in the sequence. This adds a strategic consideration to the

analysis, as agents may affect future decisions.

2. Model

Let I = {1, . . . , T} be a set of agents, indexed by i. Agents are exogenously placed in

a sequence in positions indexed by t ∈ {1 . . . , T}. The random variable Q assigns a

position Q(i) to each agent i. Let q : {1, . . . , T} → {1, . . . , T} be a permutation and

Q be the set of all possible permutations. All permutations are ex-ante equally likely:

Pr (Q = q) = 1
T! for all q ∈ Q. Each individual has no ex-ante information about his

position in the sequence.2

There are two equally likely states of the world θ ∈ Θ = {0, 1}. Agents must choose

2This setup corresponds to the case of symmetric position beliefs as defined in Monzón and Rapp [2014].

7



between two possible actions a ∈ A = {0, 1}. The timing of the game is as follows. First,

nature chooses the state of the world θ and the order of the sequence q. Agents do not

observe these directly. Instead, each agent i receives a noisy signal about the state of the

world and a sample of past actions. Then he makes a once-and-for-all choice.

payoffs may depend on the actions of others. Let X ≡ 1
T ∑j∈I aj denote the propor-

tion of agents who choose action 1, with realizations x ∈ [0, 1]. Agent i obtains utility

u (ai, X, θ) : A× [0, 1]×Θ→ R, where u (ai, X, θ) is a continuous function in X.3

2.1 Private Signals

Each agent i receives a private signal SQ(i), with realizations s ∈ S . Conditional on the

true state of the world, signals are i.i.d. across individuals and distributed according to ν0

if θ = 0 or ν1 if θ = 1. I assume that ν0 and ν1 are mutually absolutely continuous. Then,

no perfectly-revealing signals occur with positive probability, and the following likeli-

hood ratio (Radon-Nikodym derivative) exists l(s) ≡ dν1
dν0

(s). Let Gθ be the distribution

function for this likelihood ratio: Gθ(l) ≡ Pr (l(S) ≤ l | θ). Since ν0 and ν1 are mutually

absolutely continuous, the support supp(G) of G0 coincides with the support of G1. I

define signal strength as follows.

DEFINITION. SIGNAL STRENGTH. Signal strength is unbounded if 0 < G0(l) < 1 for all

likelihood ratios l ∈ (0, ∞). Signal strength is bounded if the convex hull of supp(G) is given

by co (supp(G)) =
[
l, l
]
, with both 0 < l < 1 < l < ∞.4

2.2 The Sample of Past Actions

Agents observe others’ actions through a simple sampling rule. Let ht = (a1, a2, . . . , at−1)

denote a possible history of actions up to period t− 1. Let Ht be the (random) history at

time t, with realizations ht ∈ Ht. Agent i in position q(i) = t receives a sample ξt : Ht →
3Note that an agent’s payoff depends on the actions of both those who came before him and those who

come after him in the sequence.
4I disregard intermediate cases, since they do not add much to the understanding of observational strate-

gic learning.
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Ξ containing the ordered choices of his M predecessors (if available):

ξt =


∅ if t = 1

(a1, . . . , at−1) if 1 < t ≤ M

(at−M, . . . , at−1) if t > M

The first agent observes nobody’s action, so he receives an empty sample. Agents in

positions t ∈ {2, . . . , M} observe the actions of all their predecessors. Subsequent agents

observe the actions of their M immediate predecessors.

2.3 Strategies, Mistakes and Equilibrium Existence

All information available to an agent is summarized by {s, ξ}, which is an element of

S × Ξ. I assume that individuals make mistakes with small probability ε > 0, so their

strategies are ε–constrained. Formally, agent i’s strategy is a function σi : S × Ξ →

[ε, 1− ε] that specifies a probability σi(s, ξ) for choosing action 1 given the information

available. Σ denotes the set of ε–constrained strategies. Let σ−i be the strategies for all

players other than i. Then the profile of play is given by σ = (σi, σ−i).5

Every profile σ induces a probability distribution Pσ over histories Ht, and conse-

quently over proportions X. Profile σ∗ =
(
σ∗i , σ∗−i

)
is a Bayes-Nash equilibrium of the

game if

Eσ∗ [u (ai, X, θ)] ≥ E(σi,σ∗−i)
[u (ai, X, θ)] for all σi ∈ Σ and for all i.

A profile of play is symmetric if σi = σj for all i, j ∈ I .

LEMMA 1. For each T there exists a symmetric equilibrium σ∗,T.

See Appendix A.1 for the proof.

5Mistakes are rationally anticipated. This model is equivalent to one in which agents choose from [0, 1],
but they know in advance that there is a 2ε chance that their decision will be overruled by a coin flip. An
alternative interpretation of this model is as follows. With probability 1− 2ε, an agent chooses rationally
from [0, 1]. With probability 2ε, the agent is a “behavioral” type. Half of behavioral types always choose
action 0, while the others always choose action 1.
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2.4 Definition of Strategic Learning

I study the outcomes of large anonymous games, so I let the number of agents grow

large and study symmetric equilibria. Agents face a different stage game in each state

of the world. Ex-ante, each agent is uncertain not only about the state of the world θ,

but also about the realization of the proportion X. An agent receives his private signal

and observes the actions of some predecessors. Given this information, he forms beliefs

both about the underlying state of the world, and about the possible realizations of the

proportion X. Then he chooses an action.

I study whether agents can successfully learn both about the state of the world and

about the proportion X. In standard observational learning models, complete learning

occurs when the fraction of adopters of the superior action approaches one. When pay-

off externalities exist, I say strategic learning occurs whenever agents’ actions are ex-post

optimal given both the state of the world and the realization of the proportion X. I first

present two simple examples that illustrate when agents will be ex-post satisfied with

their actions. I then introduce the formal definition of strategic learning.

EXAMPLE 1. ANTI–COORDINATION. Let u(1, X, 0) = 1
5 − X, u(1, X, 1) = 4

5 − X, and

u(0, X, θ) = 0.

Example 1 presents an environment where choosing action 1 becomes less attractive

as more agents also choose it. In state θ = 0 action 1 is preferred as long as X ≤ 1
5 , while in

state θ = 1, action 1 is preferred whenever X ≤ 4
5 . Let xθ be the realized proportion in state

θ, so x = (x0, x1) is the vector of realized proportions in each state. When (x0, x1) = (1
5 , 4

5)

agents are ex-post satisfied with their choices. If instead for example (x0, x1) = (0, 4
5),

agents would have preferred choosing action 1 in state θ = 0. In fact, (1
5 , 4

5) is the only

vector of realized proportion that makes all agents ex-post satisfied with their actions in

both states of the world.

Formally, define the excess utility from choosing action 1 in state θ given X as vθ(X) ≡

u(1, X, θ)− u(0, X, θ). I say that xθ corresponds to a Nash Equilibrium of the stage game

θ (and denote it by xθ ∈ NEθ) whenever vθ(xθ) > 0 ⇒ xθ = 1 and vθ(xθ) < 0 ⇒ xθ = 0.

Similarly, x ∈ NE whenever xθ ∈ NEθ for both θ ∈ {0, 1}.
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The circle in Figure 1(a) depicts the set NE for Example 1. There is a unique xθ ∈ NEθ

for each θ ∈ {0, 1}, so NE is the singleton {(1
5 , 4

5)}. Other games can have multiple

elements in NE. Consider for example the following simple coordination game.

EXAMPLE 2. COORDINATION. Let u(1, X, 0) = X− 2
3 , u(1, X, 1) = X− 1

3 , and u(0, X, θ) =

0.

In Example 2, NE0 = {0, 2
3 , 1} and NE1 = {0, 1

3 , 1}. Then, there are nine elements in

NE, depicted in Figure 1(b) with circles.

1
5

4
5

x0

x1

(a) NE set in Example 1 (Anti–coordination)

x0

x1

1
3

2
3

1

1

(b) NE set in Example 2 (Coordination)

Figure 1: NE sets in Examples 1 and 2

It is not obvious a priori whether the realized proportion will be close to elements

of NE. The main result in this paper (Proposition 2) shows that this is in fact the case.

Intuitively, there is strategic learning when, as the number of agents grows large, the

(random) proportion X gets close to NE. Because mistakes occur with positive probabil-

ity, the proportion X may not get arbitrarily close to elements in NE. This is why I first

take the number of agents to infinity and then the probability of mistakes to zero. Let

the distance between the realized proportion x and the set NE be defined by d (x, NE) ≡

miny∈NE |x− y|.

DEFINITION. STRATEGIC LEARNING. There is strategic learning when for all δ > 0 there
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exists ε̃ > 0, such that

lim
T→∞

Pσ∗,T (d (X, NE) < δ) = 1

for all sequences of symmetric equilibria
{

σ∗,T
}∞

T=1 in games with probability of mistakes ε < ε̃.

3. Results

3.1 Average Action Convergence

The (random) proportion X converges to its expectation in both states of the world. Let

the random variable Xθ|σ represent the proportion of agents who choose action one,

conditional on the state of the world θ, and given the strategy σ. The vector X|σ =

(X0|σ, X1|σ) has realizations x = (x0, x1) and expectation E [X|σ] = (Eσ [X0] , Eσ [X1]).

A sequence of symmetric strategy profiles
{

σT}∞
T=1 induces a sequence of proportions{

X|σT}∞
T=1 and a sequence of expected proportions

{
E
[
X|σT]}∞

T=1. As highlighted by

the notation, the expected proportion may change with T, and in fact need not converge.

I show that in spite of this, X|σT converges in probability to its expectation.

PROPOSITION 1. AVERAGE ACTION CONVERGES IN PROBABILITY. Take any sequence

of symmetric strategy profiles
{

σT}∞
T=1. Then, Xθ|σT − E

[
Xθ|σT] p−→ 0. More generally, take

any sequence
{

σ̃T
i
}∞

T=1 of alternative strategies for agent i. Let the profile of play σ̃T = (σ̃T
i , σT
−i)

include i’s alternative strategy. Then, Xθ|σ̃T − E
[
Xθ|σT] p−→ 0.

See Appendix A.2 for the proof.

A symmetric strategy profile σT induces a Markov Chain over M-period histories of

play. Any agent in positions t > M observes the actions of his M immediate predecessors.

As σT is symmetric, the likelihood that agent i in position Q(i) > M chooses action 1

given sample ξ is independent of both his identity and his position. Then, σT induces a

Markov Chain {Yt}M<t≤T over M-period histories. Moreover, as agents make mistakes

with probability ε > 0, the Markov Chain is irreducible and aperiodic. If σT was fixed

for all T, a standard argument (Ergodic Theorem) would suffice to show Proposition 1.

However, there is no guarantee that the equilibrium play is independent of the number

of agents. In fact, it is easy to find examples where this is not the case.

12



A Markov Chain induced by an ε–constrained symmetric strategy profile σT converges

to its unique stationary distribution geometrically. Fix a strategy profile σT and its in-

duced Markov Chain {Yt}t>M , but let t→ ∞. A coupling argument provides a geometric

lower bound on the speed of convergence to the stationary distribution. What is more,

for any ε > 0, this lower bound is independent of the particular strategy profile σT. As

a result, although {Yt}M<t≤T depends on a particular σT, it must approach its expecta-

tion as T grows. In fact, Xθ|σT − E
[
Xθ|σT] converges in L2 norm, so it also converges in

probability.

Finally, the long-run behavior of the proportion X does not change when one agent

deviates and picks a different strategy. To see this, compare the random proportion X|σT

induced by the symmetric profile to the one X|σ̃T induced when one agent deviates. Let

i be the agent who deviates and chooses strategy σ̃i. Agents in positions earlier than Q(i)

are not affected by agent i’s strategy. Agents in positions right after Q(i) are directly

affected. Because of mistakes, the effect that agent i’s action has on subsequent actions

t > Q(i) vanishes (geometrically) as t increases. So as the total number of agents T

increases, the fraction of agents who are directly affected by i’s action goes to zero. Then

also Xθ|σT − Xθ|σ̃T p−→ 0.

As I show next, Proposition 1 allows for a simple approximation to the utility agents

obtain from playing this game.

3.2 Utility Convergence

Agents’ expected utility converges to the utility of the expected average action. Agents’ ex-

pected utility under symmetric profile σT is simply

u
(
σT) ≡ EσT [u (ai, X, θ)] =

1
2 ∑

θ∈{0,1}
EσT [Xθ · u (1, Xθ, θ) + (1− Xθ) · u (0, Xθ, θ)] .

Define the utility of the expected average action ūT by

ūT ≡ 1
2 ∑

θ∈{0,1}
EσT [Xθ] · u (1, EσT [Xθ] , θ) + (1− EσT [Xθ]) · u (0, EσT [Xθ] , θ) .
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LEMMA 2. EXPECTED UTILITY CONVERGENCE. Take any sequence of symmetric strategy

profiles
{

σT}∞
T=1. Then, limT→∞

[
u
(
σT)− ūT] = 0.

Proof. By Proposition 1, Xθ|σT − E
[
Xθ|σT] p−→ 0. The function u (ai, X, θ) is continuous

in X. Then, Xθ|σT · u
(
ai, Xθ|σT, θ

) p−→ EσT [Xθ] · u (ai, EσT [Xθ] , θ) because of the contin-

uous mapping theorem. Moreover, u (ai, X, θ) is bounded, so Xθ|σT · u
(
ai, Xθ|σT, θ

)
is

also bounded. Then limT→∞ EσT [Xθ · u (a, Xθ, θ)] = limT→∞ EσT [Xθ] · u (ai, EσT [Xθ] , θ)

by Portmanteau’s Theorem. This leads directly to limT→∞
[
u
(
σT)− ūT] = 0. �

Proposition 1 also allows for a simple approximation of the expected utility of devia-

tions. Suppose that agent i chooses an alternative strategy σ̃i and let u
(
σ̃T

i , σT
−i
)

denote the

resulting expected utility from this deviation. Define the approximate utility of the deviation

ũT as

ũT ≡ 1
2 ∑

θ∈{0,1}
∑

a∈A
Pσ̃T (ai = a | θ) · u (a, EσT [Xθ] , θ) .

LEMMA 3. EXPECTED UTILITY OF DEVIATIONS. Take any sequence of symmetric strat-

egy profiles
{

σT}∞
T=1 and a sequence of alternative strategies for agent i:

{
σ̃T

i
}∞

T=1. Then,

limT→∞
[
u
(
σ̃T

i , σT
−i
)
− ũT] = 0.

The proof closely follows that of Lemma 2. See Appendix A.4 for the details.

3.3 The Set of Limit Points

Different profiles of play σT induce different distributions over X. Then, the sequence of

expected proportions
{

E
[
X|σT]}∞

T=1 need not have a limit. Although the proportion X

approaches its expectation, this expectation itself may not converge. Then, I focus on the

set L of limit points for sequences of equilibrium strategies
{

E
[
X|σT]}∞

T=1.

DEFINITION. LIMIT POINTS. x = (x0, x1) is a limit point if there exists a sequence of

symmetric equilibrium strategy profiles
{

σT}∞
T=1 such that for some subsequence

{
σTτ
}∞

τ=1,

limτ→∞ E
[
X|σTτ

]
= x.

The following corollary, which is an immediate consequence of Proposition 1, shows

why one should focus on the set L of limit points. As the number of agents grows large,
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only proportions X close to L occur with positive probability

COROLLARY 1. Take any sequence of symmetric strategy profiles
{

σT}∞
T=1 and any δ > 0.

Then limT→∞ PσT (d (X, L) < δ) = 1.

See Appendix A.3 for the proof.

The set of limit points L is generated by equilibrium strategies. Optimality consid-

erations allow for a partial characterization of L. Pick a sequence of symmetric equi-

libria
{

σT}∞
T=1 and also a sequence of (alternative) ε–constrained strategies for agent i:{

σ̃T
i
}∞

T=1. Since σT are equilibrium strategies, u
(
σ̃T

i , σT
−i
)
− u

(
σT) ≤ 0 for all σT

−i and

for all T. Computing exactly u
(
σ̃T

i , σT
−i
)

and u
(
σT) is not possible in general. It requires

specifying payoffs, the signal structure, the number M of agents sampled, and then also

computing the equilibrium play. Fortunately, Lemmas 2 and 3 together make it easy to

work with alternative strategies. Let the approximate improvement ∆T be given by

∆T ≡ ũT − ūT =
1
2 ∑

θ∈{0,1}

[
Pσ̃T (ai = 1 | θ)− EσT [Xθ]

]
· vθ (EσT [Xθ]) .

The following corollary provides the foundation to take advantage of the approximate

improvement ∆T.

COROLLARY 2. Take any sequence of symmetric equilibrium strategy profiles
{

σT}∞
T=1 and a

sequence of ε–constrained strategies
{

σ̃T
i
}∞

T=1 for agent i. Then lim supT→∞ ∆T ≤ 0.

See Appendix A.5 for the proof.

I present two simple alternative strategies that restrict the possible elements of the set

L of limit points. The first one consists in always following a particular action, regardless

of the information received. This strategy proves useful when one action dominates the

other in the limit. The second strategy consists on copying the action of one of the ob-

served agents, unless the signal received is extremely informative. This strategy resem-

bles the standard improvement principle in observational learning, and is useful when

no action strictly dominates the other in the limit.
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3.4 Alternative Strategy 1: Always Follow a Given Action

The first alternative strategy is simple: follow a given action, regardless of the information

received. Lemma 4 shows how this strategy imposes restrictions on the elements of L.

LEMMA 4. DOMINANCE. Any limit actions (x0, x1) ∈ L must satisfy:

(x0 − ε) v0 (x0) + (x1 − ε) v1 (x1) ≥ 0 (1)

(1− ε− x0)v0 (x0) + (1− ε− x1)v1 (x1) ≤ 0 (2)

Moreover, let v0(x0)v1(x1) ≥ 0. Then, vθ (xθ) > 0 implies (x0, x1) = (1 − ε, 1 − ε) and

vθ (xθ) < 0 implies (x0, x1) = (ε, ε).

See Appendix A.6 for the proof.

To illustrate how Lemma 4 partially characterizes the long-run outcomes of large

games, consider first equation (2). When equation (2) is not satisfied, always playing

action 1 leads to a utility that is strictly higher than the expected utility of the game.

Then, points that do not satisfy equation (2) cannot be limit points. Take again the simple

anti–coordination game presented in Example 1. The shaded area in Figure 2(a) shows all

points that satisfy equation (2).6 Take for example (4
5 , 1

5). For a large enough number of

players, agents’ expected payoffs become arbitrarily close to 1
2 [

4
5 u(1, 4

5 , 0) + 1
5 u(1, 1

5 , 1)] =

−1
2(

3
5)

2. An agent who always chooses action 1 obtains instead payoffs arbitrarily close to
1
2 [u(1, 4

5 , 0) + u(1, 1
5 , 1)] = 0. Then, there cannot be a sequence of equilibria that induces

(4
5 , 1

5) as limit point.

Equation (1) describes the outcomes not dominated by action 0 instead. In the case of

Example 1, equation (1) generates an area symmetric to that presented in Figure 2(a). In

fact, it is easy to see that (4
5 , 1

5) is also dominated by always playing action 0. The shaded

area in Figure 2(b) represents the possible outcomes that remain after applying Lemma 4

in Example 1.

Outcomes that make agents indifferent between actions in one state but not in the

other can only be in L if all agents choose the non dominated action in both states, so ei-

6The exact shape of the sets depicted in Figures 2 and 3 depend on the value of ε. I present them with
ε = 0.
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(a) Points not dominated by action 1

1
5

4
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NE

x0

x1

1
2

1
2

(b) Possible outcomes after applying Lemma 4

Figure 2: Applying Lemma 4 to Example 1 (Anti–coordination).

ther x = (1− ε, 1− ε) or x = (ε, ε). Figure 3 illustrates this for the coordination game from

Example 2. The shaded area in Figure 3(a) shows the points which are not dominated by

action 1. The shaded area in Figure 3(b) depicts the outcomes that remain after apply-

ing Lemma 4. The non-shaded circles in Figure 3(b) like (2
3 , 1) cannot be limit points.

These points are not (strictly) dominated by always playing some action. For example, as

Figure 3(a) shows, (2
3 , 1) is not (strictly) worse than always choosing action 1. However,

(2
3 , 1) cannot be a limit point because of the last result in Lemma 4.

3.5 Alternative Strategy 2: Improve Upon a Sampled Agent

The second alternative strategy deals with the most interesting case: non-dominated ac-

tions. Take a limit point x = (x0, x1) with v0(x0)v1(x1) < 0. For simplicity, assume first

that v0(x0) < 0 and v1(x1) > 0, so in the limit, agents want their action to match the

state of the world. The question in this case is simple: do agents succeed in matching

their actions to the state of the world? In other words, do non-dominated actions require

(x0, x1) = (0, 1)? This environment resembles one from observational learning without

payoff externalities, so the proof here follows arguments similar to those from those envi-
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(b) Possible outcomes after applying Lemma 4

Figure 3: Applying Lemma 4 to Example 2 (Coordination).

ronments.

I introduce an improvement principle to show how observational learning restricts

which outcomes can be limit points. Consider a simple strategy. Each individual selects

one individual at random from his sample. Let ξ̃ = 1 if the action of the selected individual

is a = 1 and ξ̃ = 0 otherwise. The simple strategy mandates that the sampled action must

be copied, unless a strong enough signal is received. Formally, focus on T big enough so

that v0(EσT [X0]) < 0 and v1(EσT [X1]) > 0. The simple strategy σ̃T is as follows:

σ̃T
(

ξ̃, s
)
=


1 if ξ̃ = 1 and l(s) ≥ kT ≡ −v0(E

σT [X0])

v1(E
σT [X1])

P
σT(ξ̃=1|θ=0)

P
σT(ξ̃=1|θ=1)

1 if ξ̃ = 0 and l(s) ≥ k
T ≡ −v0(E

σT [X0])

v1(E
σT [X1])

P
σT(ξ̃=0|θ=0)

P
σT(ξ̃=0|θ=1)

0 otherwise

(3)

This simple strategy improves upon the average utility ūT whenever signals are suf-

ficiently informative and mistakes not that common. This is derived from two intuitive

reasons. First, as long as signals more informative than the observed action ξ̃ exist, the

strategy σ̃ is strictly better than just imitating ξ̃. Second, without mistakes, the utility of
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imitating the observed action ξ̃ approaches the average utility ūT as the number of agents

grows large.

LEMMA 5. IMPROVEMENT PRINCIPLE. Take any limit point (x0, x1) ∈ L with v0(x0) < 0

and v1(x1) > 0. Then,

− v0(x0)
[
(1− 2ε)x0

[
G0 (k)− (k)−1 G1 (k)

]
− ε (1− 2x0)

]
+ v1(x1)

[
(1− 2ε) (1− x1)

[
[1− G1(k)]− k[1− G0(k)]

]
− ε (2x1 − 1)

]
≤ 0 (4)

with k = −v0(x0)
v1(x1)

x0
x1

and k ≡ −v0(x0)
v1(x1)

1−x0
1−x1

.

See Appendix A.7 for the proof.

When the outcome x does not satisfy Equation (4), agents can profit from following

the simple strategy σ̃, so such an outcome cannot be a limit point. The term G0 (k) −

k−1G1 (k) ≥ 0 in equation (4) increases in k and is strictly positive whenever k > l.

Symmetrically, the term [1 − G1(k)] − k[1 − G0(k)] is decreasing in k and strictly posi-

tive whenever k < l. Then, as long as k > l or k < l there is potential for improvement

upon those observed. On the other side, the existence of mistakes may prevent such an

improvement.7

To illustrate how Lemma 5 provides a partial characterization of the outcomes of large

games, consider first the anti–coordination game presented in Example 1. Lemma 5 ap-

plies when v0(x0) < 0 and v1(x1) > 0, which holds whenever x0 > 1
5 and x1 < 4

5 . Take a

signal structure with l
−1

= l = 1
2 . Points outside of the lightly shaded area in Figure 4(a)

have k > l. The term G0 (k)− k−1G1 (k) is strictly positive there, so for ε small enough,

equation (4) cannot hold. Next, take a more informative signal structure: l
−1

= l = 1
5 .

Points outside of the dark shaded area have k > l. As the bounds on the informativeness

of the signal become less restrictive, the shaded area becomes smaller.8

Symmetrically, whenever k < l, then [1−G1(k)]− k[1−G0(k)] is strictly positive. The

area determined by this condition is not depicted in Figure 4(a), but is symmetric to those

7Because of mistakes, it can happen that v0(x0) < 0 and v1(x1) > 0 but (x0, x1) 6= (ε, 1− ε). Example 3
in the next section shows how this can happen in the standard observational learning setup.

8As before, the exact shape of the sets shown in Figures 4 and 5 depends on the value of ε. I present
them with ε = 0.
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depicted there. The shaded areas in Figure 4(b) depict outcomes (x0, x1) that satisfy both

conditions: k ≤ l and l ≤ k. As l
−1

= l gets smaller, the area satisfying k ≤ l < l ≤ k

shrinks. Figure 4(b) provides a preview of the main result of this paper. Only outcomes

close to NE remain after applying Lemmas 4 and 5.

x0

x1

l = 1
2

l = 1
5

4
5

1
5

4
5

1
5

NE

(a) No improvement from simple strategy

1
5

4
5

1
2

1
2

l = 1
2

l = 2
3

l = 1

x0

x1

NE

(b) Applying Lemmas 4 and 5 (l
−1

= l)

Figure 4: Applying Lemma 5 to Example 1 (Anti–coordination).

For simplicity, I have only discussed so far the case with v0(x0) < 0 and v1(x1) > 0.

Lemma 6 presents an improvement principle that applies when v0(x0) > 0 and v1(x1) <

0, so agents want their action to match the opposite state of the world. The argument

behind Lemma 6 is symmetric to that of Lemma 5. See the Online Appendix for details.

LEMMA 6. Take a limit point (x0, x1) ∈ L with v0(x0) > 0 and v1(x1) < 0. Then,

v0 (x0)
[
(1− 2ε)(1− x0)

[
G0(k)− (k)−1G1(k)

]
− ε(2x0 − 1)

]
− v1 (x1)

[
(1− 2ε)x1 [[1− G1(k)]− k[1− G0(k)]]− ε (1− 2x1)

]
≤ 0.

3.6 Strategic Learning

Lemmas 4, 5 and 6 jointly lead to the main result of this paper: there is strategic learning.

I illustrate this result with the coordination game presented in Example 2. The shaded
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areas in Figure 5(a) depict the possible outcomes that satisfy equation (4) in Lemma 5

for different values of l
−1

= l. Lemma 5 applies to outcomes with v0(x0) < 0 and

v0(x0) > 0, which correspond to x0 < 2
3 and x1 > 1

3 . Lemma 6 applies when v0(x0) < 0

and v0(x0) > 0, which correspond to x0 > 2
3 and x1 < 1

3 . Figure 5(b) shows the set of

possible limit points that remain after applying Lemmas 4, 5 and 6. The shaded areas

shrink when signals become more informative. Points far from the set NE cannot be limit

points. Proposition 2 formalizes this intuition.

1
2

1
2

1
3

2
3

1
3

2
3

l = 1

l = 1
2

l = 1
4

x0

x1

(a) Lemma 5 (l
−1

= l)

1
2

1
2

1
3

2
3

1
3

2
3

x0

x1

l = 1
2

l = 1
5

(b) Lemmas 4, 5 and 6 (l
−1

= l)

Figure 5: Observational Learning in Games. Example 2 (Coordination).

PROPOSITION 2. Assume signals are of unbounded strength. Then there is strategic learning.

See Appendix A.8 for the proof.

3.7 Signals of Bounded Strength

With signals of bounded strength, agents’ play need not become arbitrarily close to ele-

ments of NE. I show however that there must be some degree of learning through the

observations of others. I provide a bound on how far from elements of NE long-run out-

comes can be. This result is a direct consequence of Lemmas 4, 5 and 6. Intuitively, when-

ever an agent’s choice is ex-post suboptimal, it is because he was wrong about the state.
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To fix ideas, let there be a positive proportion of agents who choose action one in state

zero (x0 > 0), but who are ex-post dissatisfied (v0(x0) < 0). Those agents would have

preferred choosing action zero. The loss in the population is approximately −v0(x0)x0.

Instead, the gain in the population from choosing action one in state one is v1(x1)x1. I

show that the ratio between the loss and the gain must be bounded above by the informa-

tiveness of signals. This ratio is given by k = [−v0(x0)x0]/[v1(x1)x1]. It must happen that

k ≤ l. Similarly, the ratio between the gain and the loss from choosing action zero is given

by k = [−v0(x0)(1− x0)]/[v1(x1)(1− x1)]. And it must happen that k ≥ l.

In general, let the set NE(l,l) contain all outcomes with ratios bounded by (l, l):

x ∈ NE(l,l) if


v0(x0)v1(x1) ≥ 0⇒ x ∈ NE

v0(x0) < 0 and v1(x1) > 0⇒ k ≤ l < l ≤ k

v0(x0) > 0 and v1(x1) < 0⇒ k ≤ l < l ≤ k

The following result shows bounded strategic learning must occur. Its definition is anal-

ogous to the definition of strategic learning, with NE replaced by NE(l,l).

LEMMA 7. BOUNDED STRATEGIC LEARNING. For all δ > 0 there exists ε̃ > 0, such that

lim
T→∞

Pσ∗,T

(
d
(

X, NE(l,l)

)
< δ

)
= 1

for all sequences of symmetric equilibria
{

σ∗,T
}∞

T=1 in games with probability of mistakes ε < ε̃.

The argument behind Lemma 7 is similar to that of Proposition 2. See the Online Ap-

pendix for details.

4. Examples and Applications

This paper studies the long-run outcomes of observational learning in games. The exam-

ples that follow shed further light in this direction. First, I illustrate the role of mistakes

with an example of pure observational learning (without payoff externalities). The second

example illustrates the key role of the observation of others to attain strategic learning.
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Third, I provide an example of a coordination game with multiple equilibria. In one

equilibrium agents coordinate on the superior technology, but in a different one agents

coordinate on a given technology, regardless of its inherent quality. Finally, I illustrate the

long-run outcomes of games with preferences like those from Callander [2007] and Eyster

et al. [2014].

4.1 Mistakes in Observational Learning without Payoff Externalities

EXAMPLE 3. STANDARD OBSERVATIONAL LEARNING. Let u(1, X, 1) = u(0, X, 0) = 1

and u(1, X, 0) = u(0, X, 1) = 0. Each agent observes his immediate predecessor: M = 1. The

signal structure is described by ν1[(0, s)] = s2 and ν0[(0, s)] = 2s− s2 with s ∈ (0, 1).

In this symmetric example, the average action X1 represents the fraction of agents

choosing the right action. Signals are of unbounded strength and the set NE = (0, 1) is

a singleton. Then, Proposition 2 guarantees that X1 will be δ-close to 1, for low enough

ε. This example provides a simple environment to illustrate what happens when ε is

positive. What is the link between δ and ε? Is it true that (as the number of agents grows

large) X1 must approach 1− ε? This example shows that this is not the case.

The simple signal and observational structure in Example 3 allows for an analytical

solution. As the number of agents grows large, the fraction of adopters of the supe-

rior technology approaches x̄1 ≡ 1−ε
1−2ε

(
1−

√
ε

1−ε

)
. See the Online Appendix for details.

Figure 6(a) shows the long-run fraction of adopters of the superior technology x̄1 as a

function of the probability of mistakes ε. For example, when ε = 0.01, x̄1 ≈ 0.91 < 1− ε.

4.2 No Observation of Others’ Actions

Consider next an anti-coordination game like the one presented in Example 1, but with

agents who do not observe others’ actions.

EXAMPLE 4. NO OBSERVATION OF OTHERS. Let u(1, X, 0) = 1
5 − X, u(1, X, 1) = 4

5 − X,

and u(0, X, θ) = 0. Agents do not observe others’ actions. The signal structure is as follows.

Let S = {0, 1
2 , 1}, with dν1(

1
2) = dν0(

1
2) = 99/100, dν1(1) = dν0(0) = (1− γ)/100, and

dν1(0) = dν0(1) = γ. Let γ < 1/2.
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1
100

1
100

1
5

4
5

NE

x0

x1

1
2

1
2

(b) No observation of others

Figure 6: Examples 3 and 4

A signal s = 1
2 is uninformative about the state of the world. Signals s = 0 and s = 1

are instead informative. As γ gets smaller, signals become closer to being of unbounded

strength. So Lemma 7 guarantees that the lower the γ, the closer one gets to strategic

learning, if agents observe the actions of some predecessors. When there is no observation of

others, information cannot get transmitted through actions. It is easy to see that at most

|E[X1]− E[X0]| ≤ 1/100. Outcomes outside of the shaded area in Figure 6(b) can never

be attained without observing others.

4.3 Application to Common Payoff Functions in the Literature

EXAMPLE 5. CONGESTION. EXAMPLE 1 IN EYSTER ET AL. [2014]. Payoffs are given by

u(1, X, θ) = θ − kX, u(0, X, θ) = 1− θ − k(1− X). Signals are of unbounded strength.

An agent obtains an utility of one when he chooses the superior technology. On top of

it, others who choose the same action as him exert a congestion effect of amount k.9 The

excess utility function is vθ(X) = 2θ− 2kX− (1− k). When k < 1, v0(X) < 0 and v1(X) >

9In Eyster et al. [2014], only predecessors’ actions have a negative effect. Instead, in this paper, it is both
predecessors and successors. I have adapted the payoff function to account for this.
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0 for all X. Then, NE = {(0, 1)}. If instead k ≥ 1, NE = {(1
2 −

1
2k , 1

2 +
1
2k )}. Signals are

of unbounded strength, so Proposition 2 guarantees that there is strategic learning. The

long-run outcome will be the unique element of NE. The analysis is analogous to that for

the anti-coordination game presented in Example 1.

EXAMPLE 6. DESIRE TO CONFORM WITH THE MAJORITY. CALLANDER [2007]. Payoffs

are given by u(ai, X, θ) = θ f (X) + (1− θ)(1− f (X)) + k[ai f (X) + (1− ai)(1− f (X))]. The

continuous and monotonically increasing function f (X) has f (0) = 0 and f (1) = 1. Signals

are of unbounded strength.

There is an election with two candidates: zero and one. f (X) denotes the probability

that candidate one wins the election given that a fraction X choose him.10 Each voter ob-

tains a payoff of 1 if the better candidate gets elected. On top of it, he obtains a payoff of

k if he votes for the better candidate. The excess utility function is vθ(X) = k(2 f (X)− 1).

An individual cannot affect the result of the election. Then, only the cooperation compo-

nent remains. The possible long-run outcomes are analogous to those in Example 2.

4.4 Multiple Equilibria in Coordination Games

EXAMPLE 7. COORDINATION. NO SELECTION OF EQUILIBRIA. Payoffs are as in Exam-

ple 2: u(1, X, 0) = X − 2
3 , u(1, X, 1) = X − 1

3 , and u(0, X, θ) = 0. The signal structure is as

follows. Let S = {0, 1
2 , 1}, with dν1(

1
2) = dν0(

1
2) = 99/100, dν1(1) = dν0(0) = (1− γ)/100,

and dν1(0) = dν0(1) = γ. Let γ < 1/2. Each agent observes his immediate predecessor: M = 1.

It is easy to show that there is an equilibrium where all agents choose action 1, re-

gardless of what they observe. Under such strategy of play, when the number of agents

grows large the proportion X is close to 1− ε in both states of the world. Then, it is always

optimal to choose action 1.

Interestingly, there is another equilibrium where agents coordinate on the superior

technology. This equilibrium has a simple form. Take a sequence of symmetric strategy

10In Callander [2007], f (X) = 1 if X < 1
2 , f (X) = 0 if X < 1

2 , and f (X) = 1
2 if X = 1

2 . Instead, in this
paper, payoffs are continuous, so f (X) must be continuous.
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profiles where σT(s, ξ) = σ(s, ξ) does not change with T and is given by:

σ(s, ξ) =

s if s = {0, 1}

ξ if s = 1/2

Agents follow an informative signal and mimic their predecessor if the signal is uninfor-

mative. Under this profile of play, the proportion X is close to γ in state 0 and to 1− γ in

state 1 (for T large and ε small). This implies that an agent wants his action to match the

state of the world. Moreover, the sample is informative about the state of the world. So in-

deed an agent who receives an uninformative signal copies the action of his predecessor.

To sum up, for big enough T, strategy σ is an equilibrium.

5. Discussion

I study the long-run outcomes of observational learning with payoff externalities. In sev-

eral economic situations, payoffs depend both on an uncertain state of the world and on

others’ actions. Individuals obtain information about their environment from private sig-

nals, and also by observing others. As agents need to learn both about the state of the

world and about the play of others, informational externalities are confounded with co-

ordination motives. Agents are uncertain about the true state of nature, so they do not

know on which outcome to coordinate on. In addition, even if they knew the state, they

would still not observe the aggregate play, so it would not be obvious which action to

choose. Finally, a new strategic consideration arises with payoff externalities: agents may

change their behavior in order to influence others.

I show that in spite of these confounding factors, there is strategic learning: agents’

actions are ex-post optimal given the state of the world and the actions of others. As long

as the number of agents grows large, and they sometimes make mistakes, each agent’s in-

dividual influence on the aggregate outcome becomes negligible. Individuals are aware

of this, and so they act as if they could not influence the aggregate play. In large games,

the aggregate behavior becomes almost deterministic. I can then translate an environ-
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ment with payoff externalities into one without them. I use then standard arguments in

observational learning to show that information aggregates. Agents are ex-post satisfied

with their actions in both states of the world.
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A. Proofs

A.1 Proof of Lemma 1

The proof of existence of a symmetric equilibrium builds upon Theorem 3 in Cheng,

Reeves, Vorobeychik, and Wellman [2004]. Cheng et al. [2004] show that a pure strategy

symmetric equilibrium exists in symmetric infinite games with compact, convex strat-

egy sets and continuous and quasiconcave utility functions. I first present Theorem 3 in

Cheng et al. [2004] and then show how it applies to the environment in the present paper.

For each player i ∈ I , let Ri be a set of strategies (with ρi ∈ Ri). Agent i’s payoffs from

profile (ρ1, . . . , ρT) are denoted by ui(ρ1, . . . , ρT). The tuple
[
I , {Ri}T

i=1 , {ui}T
i=1

]
denotes

a game.

DEFINITION. SYMMETRIC GAMES (DEFINITION 2 IN CHENG ET AL. [2004]). A normal-

form game is symmetric if the players have identical strategy spaces (Ri = R for all i ∈ I) and

ui(ρi, ρ−i) = uj(ρj, ρ−j) for ρi = ρj and ρ−i = ρ−j for all i, j ∈ I . Thus we can write u(ρi, ρ−i)

for the utility to any player playing strategy ρi in profile ρ. Then, the tuple [I , R, u()] denotes a

symmetric game.

THEOREM 1. (THEOREM 3 IN CHENG ET AL. [2004]). A symmetric game [I , R, u()] with

R a nonempty, convex, and compact subset of some Euclidean space and u(ρi, ρ−i) continuous in

(ρi, ρ−i) and quasiconcave in ρi has a symmetric pure-strategy equilibrium.
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In the current paper, agent i’s strategy is a function σi : S× Ξ→ [ε, 1− ε], with σi ∈ Σ.

I collapse the strategy σi into the likelihood ρi (ξ, θ) of choosing action 1 given the sample

received and the state of the world. Formally, define ρi (ξ, θ) ≡ Pσi (ai = 1 | θ, ξ). There

is a many to one mapping σi 7→ ρi. It is without loss of generality to work directly with

agents choosing ρi from the feasible set

Ri =
{

ρi : ρi(ξ, θ) = E
[
σi

(
SQ(i), ξ

)
| θ
]

for some σi ∈ Σi

}
.

The set of strategies Σ is the same for all agents, so Ri = R for all i ∈ I . Conveniently, R

is a subset of an Euclidean space of dimension |Ξ| · |Θ|. R is non-empty and compact (see

Appendix A.2 in Monzón and Rapp [2014] for the proof). Next, take ρi ∈ R and ρ′i ∈ R,

with ρi derived from σi and ρ′i from σ′i . Then

αρi(ξ, θ) + (1− α)ρ′i(ξ, θ) = αE
[
σi(SQ(i), ξ) | θ

]
+ (1− α)E

[
σ′i (SQ(i), ξ) | θ

]
= E

[
ασi(SQ(i), ξ) + (1− α)σ′i (SQ(i), ξ) | θ

]
As Σ is convex, then αρi(ξ, θ) + (1− α)ρ′i(ξ, θ) ∈ R, so R is convex. Agent i’s expected

utility as a function of ρ becomes

ui (ρi, ρ−i) =
1
2 ∑

θ∈Θ

1
T

T

∑
t=1

∑
ht∈Ht

Pρ−i (Ht = ht | θ) ∑
ξ∈Ξ

Pr (ξ | ht)

×
[
ρi (ξ, θ) Eρ−i [u(1, X, θ) | θ, ht, at = 1]

+ (1− ρi (ξ, θ)) Eρ−i [u(0, X, θ) | θ, ht, at = 0]
]

It is simple to see that ui (ρi, ρ−i) is continuous in ρi. Others’ ρ−i affect ui (ρi, ρ−i) through

two channels. First, they affect the distribution of Ht. Second, they affect the distribution

of Xθ. Utility ui (ρi, ρ−i) is continuous in ρ−i through both channels (note that u(ai, X, θ)

is continuous in X). Therefore, payoffs ui (ρi, ρ−i) are continuous in ρ. Finally, note that

ui (ρi, ρ−i) is linear in ρi(ξ, θ), so it u (ρi, ρ−i) is quasiconcave in ρi. Then, by Theorem 3 in

Cheng et al. [2004] there exists ρ∗ ∈ R such that ρ∗ is a best response to ρ−i = (ρ∗, . . . , ρ∗).

Thus, if each agent plays a strategy σ∗ that maps to ρ∗, all play a best response. As a
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result, there exists a symmetric equilibrium σ∗ of the game. �

A.2 Proof of Proposition 1

I present first an intermediate Lemma. Let P =
(

pij
)

be a transition matrix on a finite

state space Y . Assume that the Markov Chain Y = (Yn)
∞
n=0 associated with P is aperiodic

and irreducible. Let µ denote the unique stationary distribution of Y.

LEMMA 8. Let Y1 ⊆ Y be a non-empty subset of the state space and µ1 ≡ ∑y∈Y1 µy. Then,

there exists ρ > 0 and K > 0 such that for any distribution over states in period t:

∣∣∣Pr
(

Yt+n ∈ Y1
)
− µ1

∣∣∣ ≤ 2(1− ρ)(n−K)/K

where K is large enough so that ρ = mini,j p(K)ij > 0.

Proof. The proof is based on a standard coupling argument. It follows closely sections

2.7 and 2.8 of Lindvall [1992]. Let Y′n be the Markov Chain with transition matrix P but

started at the stationary distribution µ. Instead, let Yn be the Markov Chain with transition

matrix P but started at some distribution λ. Let N be the first period in which these two

chains meet: N = min
{

k : Yk = Y′k
}

. Finally let Y′′n be given by:

Y′′n =

Yn if n < N

Y′n if n ≥ N

Then

∣∣Pr (Yn = y)− µy
∣∣ = ∣∣Pr (Yn = y)− Pr

(
Y′n = y

)∣∣
=
∣∣∣Pr (Yn = y, N ≤ n) + Pr (Yn = y, N > n)

− Pr
(
Y′n = y, N ≤ n

)
− Pr

(
Y′n = y, N > n

)∣∣∣
=
∣∣Pr (Yn = y, N > n)− Pr

(
Y′n = y, N > n

)∣∣∣∣Pr (Yn = y)− µy
∣∣ ≤ Pr (Yn = y, N > n) + Pr

(
Y′n = y, N > n

)
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For the subset Y1 ⊆ Y , Pr
(
Yn ∈ Y1) = ∑y∈Y1 Pr (Yn = y), so

Pr
(

Yn ∈ Y1
)
− µ1 = ∑

x∈Y1

Pr (Yn = y)− µ1 = ∑
x∈Y1

[
Pr (Yn = y)− µy

]
∣∣∣Pr
(

Yn ∈ Y1
)
− µ1

∣∣∣ ≤ ∑
x∈Y1

∣∣Pr (Yn = y)− µy
∣∣

≤ ∑
x∈Y1

Pr (Yn = y, N > n) + ∑
x∈Y1

Pr
(
Y′n = x, N > n

)
≤ 2 Pr (N > n)

Since Y is finite, and the Markov Chain Y is irreducible and aperiodic, there exists a

finite K > 0 large enough so that: ρ = mini,j p(K)ij > 0. Then, for any two distributions µ

and λ,

Pr (N > n) = Pr
(
Yi 6= Y′i ∀ i ≤ n

)
≤ (1− ρ)bn/Kc,

where bn/Kc is the integer part of n/K. To avoid using bn/Kc, note that bn/Kc ≥ n/K−

1 = (n− K)/K. Then,
∣∣Pr
(
Yn ∈ Y1)− µ1

∣∣ ≤ 2(1− ρ)(n−K)/K. �

With Lemma 8 in hand, I turn to the proof of Proposition 1. Let {στ}∞
τ=1 be a sequence

of symmetric strategy profiles. After the first M periods, all samples are of size M. Let

Y = {0, 1}M be the set of all possible histories of length M. Each symmetric strategy

profile στ induces a Markov Chain Yτ = (Yt)t≥M over Y . Since mistakes occur with

positive probability, these Markov Chains are irreducible and aperiodic. Then, each Yτ

has a unique stationary distribution, which I denote by µτ. After exactly M periods,

transition probabilities are bounded below: miny,y′∈Y×Y Pr (Yn+M = y′ | Yn = y) ≥ εM.

The lower bound εM is independent of the strategy profile στ.

Let Y1 be all histories where the last agent chose action a = 1 and let µ̄τ ≡ ∑y∈Y1 µτ
y .

Then, Lemma 8 guarantees that for any distribution over states in period t:

∣∣∣Pr
(

Yτ
t+n ∈ Y1

)
− µ̄τ

∣∣∣ ≤ 2
(

1− εM
)(n−M)/M

= 2
[(

1− εM
) 1

M
]n−M

≡ 2δ(n−M) ≡ cδn

(5)

This bound holds for any symmetric strategy profile στ.
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In what follows, I fix a state of the world θ, so from now on I drop the subindex θ.

Also, I fix a strategy profile στ. I use τ to index strategy profiles and T to index the

number of agents. Let V(στ) denote the variance of X|στ, for any number of players T:

V(στ) ≡ Eστ

[
(X− Eστ [X | θ])2 | θ

]
. I show that for any δ̃ > 0 there exists T̃ < ∞ such

that: Eστ

[
X2 | θ

]
− (Eστ [X | θ])2 < δ for all T > T̃ and for all τ. This implies that

lim
T→∞

EσT

[
X2 | θ

]
− (EσT [X | θ])2 = 0

that is, X|σT − E
[
X|σT] converges to zero in L2 norm, which implies convergence in

probability.

Fix a strategy profile στ and define V(στ) as follows:

V(στ) ≡ Eστ

( 1
T

T

∑
t=1

at

)2
−(Eστ

[
1
T

T

∑
t=1

at

])2

=
1

T2

[
T

∑
t=1

(
Eστ

[
a2

t

]
− Eστ [at]

2
)
+ 2

T

∑
t=1

T−t

∑
n=1

(Eστ [atat+n]− Eστ [at] Eστ [at+n])

]
(6)

It is easy to see that ∑T
t=1

(
Eστ

[
a2

t
]
− Eστ [at]

2
)
≤ T. Regarding the remaining terms,

note that

Eστ [atat+n]− Eστ [at] Eστ [at+n] = Pστ (at = 1) Pστ (at+n = 1 | at = 1)

− Pστ (at = 1) Pστ (at+n = 1)

= Pστ (at = 1) [Pστ (at+n = 1 | at = 1)− Pστ (at+n = 1)]

≤ |Pστ (at+n = 1 | at = 1)− Pστ (at+n = 1)|

Given equation (5), |Pστ (at+n = 1 | at = 1)− µ̄| < cδn and |Pστ (at+n = 1)− µ̄| < cδ(t+n)

for any στ. Then,

|Pστ (at+n = 1 | at = 1)− Pστ (at+n = 1)| < cδn + cδt+n ≤ 2cδn
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So the second term in equation (6) becomes:

2
T

∑
t=1

T−t

∑
n=1

(Eστ [atat+n]− Eστ [at] Eστ [at+n]) ≤ 2
T

∑
t=1

T−t

∑
n=1

2cδn = 4c
T

∑
t=1

T−t

∑
n=1

δn

≤ 4c
T

∑
t=1

δ
(
1− δT−t)
1− δ

≤ 4c
T

∑
t=1

δ

1− δ

= 4c
δ

1− δ
T

Then, for all στ

V(στ) ≤ 1
T

(
1 + 4c

δ

1− δ

)

where
(

1 + 4c δ
1−δ

)
is independent of σ.

Then, pick any b > 0. There exists T̃ such that for all T > T̃, and for all στ, V(στ) < b.

So in particular, for all b > 0 there exists T̃ such that for all T > T̃, V(σT) < b. That is,

V(σT)→ 0. �

The proof of the second part of Proposition 1 is as follows. Let agent i be in position

t = Q(i). Define two Markov Chains, both with the same transition matrix P. These

chains start right after agent i plays. Their only difference is the starting distribution over

states. First, (Yn)n≥t+1 has agent i following strategy σi. Second,
(
Ỹn
)

n≥t+1 has agent i

following strategy σ̃i. As before, let N be the first period in which these two chains meet.

By equation (5), Pr (N > n) ≤ cδn. Note that for any N = n,

X|σT − X|σ̃T =
1
T

[
Q(i)−1

∑
t=1

(
at|σT − at|σ̃T

)
+

Q(i)+n−1

∑
t=Q(i)

(
at|σT − at|σ̃T

)

+
T

∑
t=Q(i)+n

(
at|σT − at|σ̃T

)]

But at|σT = at|σ̃T for t ∈ {1, Q(i)− 1} and for t ∈ {Q(i) + n, T}. Then,

∣∣∣X|σT − X|σ̃T
∣∣∣ =

∣∣∣∣∣∣ 1
T

Q(i)+n−1

∑
t=Q(i)

(
at|σT − at|σ̃T

)∣∣∣∣∣∣ ≤ n
T
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To sum up, for any strategy profile σT,

Pr
(∣∣∣X|σT − X|σ̃T

∣∣∣ ≥ n
T

)
≤ cδn

Then for all b > 0, there exists n such that b ≥ cδn. Fix b and n. There is always a T, so

that n/T < b. Then,

Pr
(∣∣∣X|σT − X|σ̃T

∣∣∣ ≥ b
)
≤ Pr

(∣∣∣X|σT − X|σ̃T
∣∣∣ ≥ n

T

)
≤ cδn ≤ b

Finally, note that both X|σT − X|σ̃T p−→ 0 and X|σT − E
[
X|σT] p−→ 0. Then also X|σ̃T −

E
[
X|σT] p−→ 0. �

A.3 Proof of Corollary 1

The distance d (X, L) can be bounded above as follows:

d (X, L) = min
y∈L
|X− y| ≤ min

y∈L
[|X− EσT [X]|+ |EσT [X]− y|]

≤ |X− EσT [X]|+ min
y∈L
|EσT [X]− y| = |X− EσT [X]|+ d (EσT [X] , L)

The set L includes all limit points for convergent subsequences of {EσT [X]}∞
T=1. Then

limT→∞ d (EσT [X] , L) = 0. For some T̃ large enough, d (EσT [X] , L) < δ/2 for all T > T̃.

Then PσT (d (X, L) < δ) ≥ PσT (|X− EσT [X]| < δ/2). Finally, Proposition 1 guarantees

that limT→∞ PσT (|X− EσT [X]| < δ/2) = 1. �

A.4 Proof of Lemma 3

Agent i’s expected utility u
(
σ̃T

i , σT
−i
)

is given by:

u
(

σ̃T
i , σT
−i

)
= Eσ̃T [u (ai, X, θ)] =

1
2 ∑

θ∈{0,1}
∑

a∈A
Eσ̃T [u (a, X, θ) 1 {ai = a} | θ]

=
1
2 ∑

θ∈{0,1}
∑

a∈A
Eσ̃T [u (a, Xθ, θ) | ai = a] Pσ̃T (ai = a | θ) .
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Then,

u
(

σ̃T
i , σT
−i

)
− ũT =

1
2 ∑

θ∈{0,1}
∑

a∈A
Pσ̃T (ai = a | θ)

× [Eσ̃T [u (a, Xθ, θ) | ai = a]− u (a, EσT [Xθ] , θ)]

If limT→∞ Pσ̃T (ai = a | θ) = 0, then trivially

lim
T→∞

Pσ̃T (ai = a | θ) [Eσ̃T [u (a, Xθ, θ) | ai = a]− u (a, EσT [Xθ] , θ)] = 0.

Assume instead that there exists δ > 0 such that Pσ̃T (ai = a | θ) ≥ δ infinitely often.

By Proposition 1, for any δ > 0, limT→∞ Pσ̃T (|Xθ − EσT [Xθ]| ≥ δ) = 0. Then, it is also true

that for any δ > 0, limT→∞ Pσ̃T (|Xθ − EσT [Xθ]| ≥ δ | ai = a) = 0.11 So by Portmanteau’s

Theorem, limT→∞ Eσ̃T [u (a, Xθ, θ) | ai = a] = limT→∞ u (a, EσT [Xθ] , θ). This leads directly

to limT→∞
[
u
(
σ̃T

i , σT
−i
)
− ũT] = 0. �

A.5 Proof of Corollary 2

lim sup
T→∞

∆T = lim sup
T→∞

[
ũT − u

(
σ̃T

i , σT
−i

)
+ u

(
σ̃T

i , σT
−i

)
− u

(
σT
)
+ u

(
σT
)
− ūT

]
≤ lim sup

T→∞

[
ũT − u

(
σ̃T

i , σT
−i

)]
+ lim sup

T→∞

[
u
(

σ̃T
i , σT
−i

)
− u

(
σT
)]

+ lim sup
T→∞

[
u
(

σT
)
− ūT

]
Lemmas 2 and 3 imply that limT→∞

[
u
(
σT)− ūT] and limT→∞

[
ũT − u

(
σ̃T

i , σT
−i
)]

= 0,

respectively. Next, σT are equilibrium strategies, so u
(
σ̃T

i , σT
−i
)
− u

(
σT) ≤ 0 for all σT

−i

and for all T. These two facts together imply that

lim sup
T→∞

∆T ≤ lim sup
T→∞

[
u
(

σ̃T
i , σT
−i

)
− u

(
σT
)]
≤ 0. �

11To see this note that: Pσ̃ (|Xθ − Eσ [Xθ ]| > δ) = ∑a∈A Pσ̃ (|Xθ − Eσ [Xθ ]| > δ | θ, ai = a) Pσ̃ (ai = a | θ).
By Proposition 1, limT→∞ Pσ̃T (|Xθ − EσT [Xθ ]| > δ) = 0. Then, if Pσ̃T (ai = a | θ) ≥ δ infinitely often, it
must be the case that limT→∞ Pσ̃T (|Xθ − EσT [Xθ ]| > δ | ai = a) = 0.
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A.6 Proof of Lemma 4

Lemma 4 deals with the case in which an action is dominant (either weakly or strictly)

in the limit. Consider two alternative strategies, σ̃0: “always play action 0”, and σ̃1: “al-

ways play action 1”. Define accordingly ∆0,T ≡ 1
2 ∑θ∈{0,1} (ε− EσT [Xθ]) vθ (EσT [Xθ]) and

∆1,T ≡ 1
2 ∑θ∈{0,1} (1− ε− EσT [Xθ]) vθ (EσT [Xθ]). Then, by Corollary 2,

lim sup
T→∞

∆0,T =
1
2 ∑

θ∈{0,1}
(ε− xθ) vθ (xθ) ≤ 0 and

lim sup
T→∞

∆1,T =
1
2 ∑

θ∈{0,1}
(1− ε− xθ) vθ (xθ) ≤ 0. �

Next, assume v0(x0)v1(x1) ≥ 0. Then, if vθ(xθ) < 0, equation (1) requires xθ = ε. If,

on the other side, vθ(xθ) > 0, equation (2) requires xθ = 1− ε.

The rest of the proof is a direct result of the following Lemma:

LEMMA 9. If xθ = ε for some θ ∈ {0, 1}, then x = (ε, ε). Similarly, if xθ = 1− ε for some

θ ∈ {0, 1}, then x = (1− ε, 1− ε).

Proof. Assume that x1 = 1− ε, but x0 6= 1− ε. The proof is analog for all other cases.

The expected proportion EσT [Xθ] can be expressed as follows:

EσT [Xθ] = EσT

[
1
T

T

∑
t=1

at | θ

]
=

1
T

T

∑
t=1

EσT [at | θ] =
1
T

T

∑
t=1

PσT (at = 1 | θ)

= PσT (ai = 1 | θ) = ∑
ξ∈Ξ

PσT (ξ | θ)
∫

s∈S
σT(s, ξ)dνθ(s)

Let ΞM ⊂ Ξ be the set of all samples with exactly M actions. All agents in positions

M < t ≤ T receive samples ξt ∈ ΞM. Since mistakes occur with positive probability ε > 0,

all samples ξ ∈ ΞM occur with positive probability: PσT (ξ | θ) ≥ εM for any strategy

profile σT. Then, limT→∞
∫

s∈S σT(s, ξ)dν1(s) = 1− ε for all ξ ∈ ΞM. Since σT(s, ξ) ≤ 1− ε,

then, for any c̃ > 0

lim
T→∞

∫
s∈S

1
{

σT(s, ξ) ≥ 1− ε− c̃
}

dν1(s) = 1.
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I show next that the previous equation must also hold for measure ν0. That is, for all

c̃ > 0

lim
T→∞

∫
s∈S

1
{

σT(s, ξ) ≥ 1− ε− c̃
}

dν0(s) = 1. (7)

which implies that limT→∞
∫

s∈S σT(s, ξ)dν0(s) = 1− ε for all ξ ∈ ΞM, and so x0 = 1− ε.

To see why equation (7) must hold for measure ν0, consider the sequence of sets{
St}∞

t=1 with St = 1
{

σT(s, ξ) < 1− ε− c̃
}

. We know that limT→∞
∫

s∈St dν1(s) = 0. As-

sume that for some c > 0,
∫

s∈St dν0(s) ≥ c > 0 for all t. Pick l ∈ (0, ∞) such that12

0 <
∫
{s:l(s)≤l}

dν0(s) ≤ c.

Then,

∫
{s:l(s)≤l}

dν0(s) ≤ c ≤
∫

s∈St
dν0(s)∫

{s:l(s)≤l,s 6∈St}
dν0(s) ≤

∫
{s:l(s)>l,s∈St}

dν0(s)∫
{s:l(s)≤l,s 6∈St}

l(s)−1dν1(s) ≤
∫
{s:l(s)>l,s∈St}

l(s)−1dν1(s)

l−1
∫
{s:l(s)≤l,s 6∈St}

dν1(s) ≤ l−1
∫
{s:l(s)>l,s∈St}

dν1(s)

G1(l) =
∫
{s:l(s)≤l}

dν1(s) ≤
∫
{s∈St}

dν1(s)

Because of absolute continuity, since G0(l) > 0, then G1(l) > 0. So for all elements of{
St}∞

t=1,
∫

s∈St dν1(s) ≥ G1(l) > 0. Then,
∫

s∈St dν1(s) cannot converge to zero. �

A.7 Proof of Lemma 5

Let πT
θ ≡ PσT

(
ξ̃ = 1 | θ

)
. I show first the following intermediate lemma.

LEMMA 10. Let T ≥ 2M. For any sequence of strategy profiles
{

σT}∞
T=1, and for θ ∈ {0, 1},

limT→∞ πT
θ − EσT [Xθ] = 0.

12It may happen that the lowest possible interval {s : l(s) ≤ l} with positive mass starts with a mass
point (say at l̃). If so, its mass may be

∫
{s:l(s)≤l̃} dν0(s) > c. In such a case, consider α ∈ (0, 1) with

α
∫
{s:l(s)≤l̃} dν0(s) = c. The same argument holds.
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Proof. Fix the state of the world θ.

πT
θ =

1
T

T

∑
t=1

PσT

(
ξ̃t = 1

)
=

1
T

[
M

∑
t=2

1
t− 1

t−1

∑
τ=1

PσT (aτ = 1) +
T

∑
t=M+1

1
M

t−1

∑
τ=t−M

PσT (aτ = 1)

]

=
1
T

[
T−1

∑
τ=1

PσT (aτ = 1)
min{τ+M,T}

∑
t=τ+1

[min {t− 1, M}]−1

]

=
1
T

[
M−1

∑
τ=1

PσT (aτ = 1)
τ+M

∑
t=τ+1

(t− 1)−1 +
T−M

∑
τ=M

PσT (aτ = 1)
τ+M

∑
t=τ+1

M−1

+
T−1

∑
τ=T−M+1

PσT (aτ = 1)
T

∑
t=τ+1

M−1

]

=
1
T

T

∑
τ=1

PσT (aτ = 1)

+
1
T

[
M−1

∑
τ=1

PσT (aτ = 1)

(
τ+M−1

∑
t=τ

t−1 − 1

)
−

T

∑
τ=T−M+1

PσT (aτ = 1)
(

1− T − τ

M

)]

So

πT
θ − EσT [Xθ] =

1
T

[
M−1

∑
τ=1

PσT (aτ = 1)

(
τ+M−1

∑
t=τ

t−1 − 1

)

−
T

∑
τ=T−M+1

PσT (aτ = 1)
(

1− T − τ

M

)]

Then, it follows directly that limT→∞ πT
θ − EσT [Xθ] = 0. �

With Lemma 10 in hand, I turn to the proof of Lemma 5. Given the simple strategy,

the approximate improvement is given by:

∆T =
1
2 ∑

θ∈{0,1}
vθ (EσT [Xθ])

[
ε + (1− 2ε)

[
πT

θ [1− Gθ(k
T)] + (1− πT

θ )[1− Gθ(k
T
)]
]

− EσT [Xθ]
]

=
1
2 ∑

θ∈{0,1}
vθ (EσT [Xθ])

[
πT

θ − EσT [Xθ] + (1− 2πT
θ )ε
]
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+
1− 2ε

2 ∑
θ∈{0,1}

vθ (EσT [Xθ])
[
−πT

θ Gθ

(
kT
)
+
(

1− πT
θ

) [
1− Gθ

(
k

T
)]]

=
1
2 ∑

θ∈{0,1}
vθ (EσT [Xθ])

[
πT

θ − EσT [Xθ] + (1− 2πT
θ )ε
]
+

1− 2ε

2

[

(−v0 (EσT [X0]))πT
0

[
G0

(
kT
)
− v1 (EσT [X1])

−v0 (EσT [X0])

πT
1

πT
0

G1

(
kT
)]

+ v1 (EσT [X1])
(

1− πT
1

) [[
1− G1

(
k

T
)]
− −v0 (EσT [X0])

v1 (EσT [X1])

1− πT
0

1− πT
1

[
1− G0

(
k

T
)]]]

=
1
2 ∑

θ∈{0,1}
vθ (EσT [Xθ])

[
πT

θ − EσT [Xθ]
]
+

1− 2ε

2

[

(−v0 (EσT [X0]))

[
πT

0

[
G0

(
kT
)
−
(

kT
)−1

G1

(
kT
)]
− ε

1− 2ε

(
1− 2πT

0

)]
+ v1 (EσT [X1])

[(
1− πT

1

) [[
1− G1

(
k

T
)]
− k

T
[
1− G0

(
k

T
)]]
−

ε
(
2πT

1 − 1
)

1− 2ε

]]

Let k ≡ −v0(x0)
v1(x1)

x0
x1

and k ≡ −v0(x0)
v1(x1)

1−x0
1−x1

. Note that limT→∞ kT = k and limT→∞ k
T
= k.

However, Gθ(l) may be discontinuous if there are mass points. In spite of this,

lim
T→∞

G0

(
kT
)
−
(

kT
)−1

G1

(
kT
)
= G0 (k)− (k)−1 G1 (k) . (8)

To see this, first let liml↘k Gθ(l) denote the limit when l approaches k from the right. Since

Gθ(l) is always right-continuous, then equation (8) holds. Next, let liml↗k Gθ(l) denote

the limit when l approaches k from the left. If Gθ(l) is left-continuous at k, then again

equation (8) holds. Recall that l(s) = dν1
dν0

(s). For l ∈ (0, ∞), if Gθ(l) is not left-continuous

at k, then
∫

l(s)=k dνθ(s) > 0 for both θ ∈ {0, 1}. Then,

lim
l↗k

G0 (l)− l−1G1 (l) =
∫

l(s)<k
dν0(s)− k−1

∫
l(s)<k

dν1(s)

=
∫

l(s)≤k
dν0(s)−

∫
l(s)=k

dν0(s)

− k−1
(∫

l(s)≤k
dν1(s)−

∫
l(s)=k

dν1(s)
)

= G0 (k)− (k)−1 G1 (k)−
∫

l(s)=k
dν0(s) + k−1

∫
l(s)=k

dν1(s)
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= G0 (k)− (k)−1 G1 (k)−
∫

l(s)=k
dν0(s) + k−1

∫
l(s)=k

dν1(s)
dν0(s)

dν0(s)

= G0 (k)− (k)−1 G1 (k)−
∫

l(s)=k
dν0(s) + k−1

∫
l(s)=k

kdν0(s)

= G0 (k)− (k)−1 G1 (k)

The same argument guarantees that

lim
T→∞

[
1− G1

(
k

T
)]
− k

T
[
1− G0

(
k

T
)]

=
[
1− G1

(
k
)]
− k

[
1− G0

(
k
)]

. (9)

Given equations (8) and (9),

lim
T→∞

∆T =
−v0(x0)

2

[
(1− 2ε)x0

[
G0 (k)− (k)−1 G1 (k)

]
− ε (1− 2x0)

]
+

v1(x1)

2

[
(1− 2ε) (1− x1)

[[
1− G1

(
k
)]
− k

[
1− G0

(
k
)]]
− ε (2x1 − 1)

]
So Corollary 2 leads directly to equation (4). �

A.8 Proof of Proposition 2

I present first the following proposition.

PROPOSITION 3. (PROPOSITION 11 IN MONZÓN AND RAPP [2014]). For all l ∈ (l, l),

Gθ(l) satisfies:

l >
G1(l)
G0(l)

and l <
1− G1(l)
1− G0(l)

Moreover, if k′ ≥ k then,

[1− G1 (k)]− k [1− G0 (k)] ≥
[
1− G1

(
k′
)]
− k′

[
1− G0

(
k′
)]

G0
(
k′
)
− G1

(
k′
) (

k′
)−1 ≥ G0 (k)− G1 (k) (k)

−1

See Monzón and Rapp [2014] for the proof.

Let NEδ =
{

x ∈ [0, 1]2 : d (x, NE) ≤ δ
}

be the set of all points which are δ–close to

elements of NE and let Lε denote the set of limit points in a game with mistake probability
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ε > 0. I show first the following Lemma.

LEMMA 11. LIMIT SET APPROACHES NE. For any δ > 0, ∃ ε̃ > 0 : Lε ⊆ NEδ ∀ε < ε̃.

Proof. By contradiction. Assume that there exists 1) a sequence of mistake probabilities

{εn}∞
n=1 with limn→∞ εn = 0, and 2) an associated sequence {xn}∞

n=1 with xn ∈ Lεn
for all

n, but 3) xn 6∈ NEδ for all n. Since xn ∈ [0, 1]2 for all n, this sequence has a convergent

subsequence {xnm}∞
m=1 with limm→∞ xnm = x̄. If v0(x̄0) = v1(x̄1) = 0, then x̄ ∈ NE, so for

m large enough, xnm ∈ NEδ. Then, it must be the case that vθ(x̄θ) 6= 0 for some θ.

Assume that v1(x̄1) > 0. I show next that this requires x̄1 = 1. Pick m̃ large enough

so that v1(xnm
1 ) > 0 for all m > m̃. For all m with v0(xnm

0 ) ≥ 0, Lemma 4 implies that

xnm = (1− εnm , 1− εnm). So if v0(xnm
0 ) ≥ 0 infinitely often, then x̄1 = 1. Similarly, for all

m with v0(xnm
0 ) < 0, by Lemma 5 equation (4) must hold:

−v0(xnm
0 )

2

[ →1︷ ︸︸ ︷
(1− 2εnm)

≥0︷ ︸︸ ︷
xnm

0

[
G0 (knm)− (knm)

−1 G1 (knm)
]
−

→0︷ ︸︸ ︷
ε (1− 2x0)

]
+

v1(xnm
1 )

2

[
(1− 2εnm)︸ ︷︷ ︸

→1

(
1− xnm

1

) [[
1− G1

(
k

nm
)]
− k

nm
[
1− G0

(
k

nm
)]]

︸ ︷︷ ︸
≥0

(10)

− εnm
(
2xnm

1 − 1
)︸ ︷︷ ︸

→0

]
≤ 0

Proposition 3 guarantees both that
[[

1− G1

(
k

nm
)]
− k

nm
[
1− G0

(
k

nm
)]]
≥ 0 and that[

G0 (knm)− (knm)
−1 G1 (knm)

]
≥ 0. Then, as equation (10) shows, when εnm → 0 only

non-negative terms may remain. Assume next that x̄1 < 1. Then limm→∞ v1(xnm
1 )(1−

xnm
1 ) = v1(x̄1)(1− x̄1) > 0. As k = −[v0(x0)(1− x0)]/[v1(x1)(1− x1)], this implies that

limm→∞ k
nm

< ∞. Since signals are of unbounded strength, then

lim
m→∞

[[
1− G1

(
k

nm
)]
− k

nm
[
1− G0

(
k

nm
)]]

> 0.

To summarize, whenever x̄1 < 1, equation (10) is not satisfied for small enough εnm . This

proves that x̄1 = 1.

Analogous arguments (using also Lemma 6) imply that if vθ(x̄θ) > 0, then x̄θ = 1 and
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that if vθ(x̄θ) < 0, then x̄θ = 0. So x̄ ∈ NE, and thus I have reached a contradiction. �

With Lemma 11 the proof of Proposition 2 is straightforward. Fix δ/2 > 0 and let ε̃ be

as given by Lemma 11. Write:

d (X, NE) = min
y∈NE

|X− y| = min
y∈NE

|X− l + l − y| ≤ |X− l|+ min
y∈NE

|l − y| for any l

≤ d (X, Lε) + min
y∈NE

|l − y| for l ∈ arg min
l∈Lε
|X− l|

≤ d (X, Lε) + δ/2 ∀ε < ε̃, by Lemma 11.

Then, for any σ, Pσ (d (X, NE) < δ) ≥ Pσ (d (X, Lε) < δ/2). By Corollary 1, for all δ/2 >

0, and all sequences of symmetric equilibria:

lim
T→∞

PσT,∗ (d (X, NE) < δ) ≥ lim
T→∞

PσT,∗ (d (X, Lε) < δ/2) = 1 �
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