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Abstract

Value-at-Risk (VaR) has become a standard risk measure for financial risk management.

However, many authors claim that there are several conceptual problems with VaR. Among

these problems, an important one is that VaR disregards any loss beyond the VaR level. We

call this problem the ‘‘tail risk’’. In this paper, we illustrate how the tail risk of VaR can cause

serious problems in certain cases, cases in which expected shortfall can serve more aptly in its

place. We discuss two cases: concentrated credit portfolio and foreign exchange rates under

market stress. We show that expected shortfall requires a larger sample size than VaR to pro-

vide the same level of accuracy.
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1. Introduction

Value-at-Risk (VaR) has become a standard risk measure for financial risk man-

agement due to its conceptual simplicity, ease of computation, and ready applicabil-

ity. Nevertheless, VaR has been charged as having several conceptual problems.
Artzner et al. (1997, 1999), among others, have cited the following shortcomings:

(i) VaR measures only percentiles of profit–loss distributions and disregards any loss

beyond the VaR level (we term this problem the ‘‘tail risk’’ 1); and (ii) VaR is not

coherent, since it is not subadditive. 2

To remedy the problems inherent in VaR, Artzner et al. (1997) have proposed the

use of expected shortfall. Expected shortfall is defined as the conditional expectation

of loss for losses beyond the VaR level. By its very definition, expected shortfall takes

into account losses beyond the VaR level. Expected shortfall is also demonstrated to
be subadditive, which assures its coherence as a risk measure.

In this paper, we compare VaR and expected shortfall by summarizing the

authors� four papers (Yamai and Yoshiba, 2002a; Yamai and Yoshiba, 2002b; Ya-

mai and Yoshiba, 2002c; Yamai and Yoshiba, 2002d). In particular, focusing on tail

risk, we illustrate how it can result in serious problems in certain real-world cases. 3

Our main points are summarized below.

(i) Rational investors who maximize their expected utility may be misled by the use
of VaR as a risk measure. They are likely to construct positions with unintended

weaknesses that result in greater losses under conditions beyond the VaR

level. 4

(ii) VaR is unreliable under market stress. Under extreme asset price fluctuations or

an extreme dependence structure of assets, VaR may underestimate risk.

(iii) Investors or risk managers can solve such problems by adopting expected short-

fall, which by definition takes into account losses beyond the VaR level.
1 We have followed the terminology of the BIS (Bank for International Settlements) Committee on the

Global Financial System (2000).
2 A risk measure q is subadditive when the risk of the total position is less than or equal to the sum of

the risk of individual portfolios. Let X and Y be random variables denoting the losses of two individual

positions. A risk measure q is subadditive if the following equation is satisfied:

qðX þ Y Þ 6 qðX Þ þ qðY Þ:

Intuitively, subadditivity requires that ‘‘risk measures should take into account risk reduction through

portfolio diversification effects’’.
3 Recently, various studies on VaR and expected shortfall have been reported. As in our studies,

Consigli (2004) evaluates tail risk of VaR and expected shortfall by applying extreme value theory. Other

than tail risk, Acerbi (2004) generalizes the concept of expected shortfall to propose ‘‘spectral measures of

risk’’. Rau-Bredow (2004) evaluates convexity of VaR and expected shortfall by calculating first and

second derivatives of each risk measure.
4 This result is shown by Basak and Shapiro (2001) in dynamic portfolio optimization framework.

Yamai and Yoshiba (2002a) illustrate this problem in simple examples of far-out-of-the-money option and

concentrated credit portfolio.
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(iv) The effectiveness of expected shortfall, however, depends on the accuracy of

estimation.

The rest of the paper is organized as follows. Section 2 defines the concepts of

VaR and expected shortfall. Section 3 discusses some examples of the tail risk of
VaR. Section 4 illustrates estimation errors for VaR and expected shortfall. Section

5 concludes the paper.
2. Value-at-risk and expected shortfall

In this section, we introduce the concepts of VaR and expected shortfall, pointing

out that VaR and expected shortfall give essentially the same information under nor-
mal distributions.

2.1. Definition of value-at-risk and expected shortfall

VaR is defined as the ‘‘possible maximum loss over a given holding period

within a fixed confidence level’’. That is, mathematically, VaR at the

100(1 � a)% confidence level is defined as the upper 100a percentile of the loss dis-

tribution. Suppose X is a random variable denoting the loss of a given portfolio.
Following Artzner et al. (1999), we define VaR at the 100(1 � a)% confidence level

(VaRa(X)) as

VaRaðX Þ ¼ supfx j P ½X P x� > ag; ð1Þ
where sup{xjA} is the upper limit of x given event A, and sup{xjP[XP x] > a} indi-

cates the upper 100a percentile of loss distribution. This definition can be applied to

both discrete and continuous loss distributions.
Artzner et al. (1997) proposed expected shortfall (also called ‘‘conditional VaR’’,

‘‘mean excess loss’’, ‘‘beyond VaR’’, or ‘‘tail VaR’’) to alleviate the problems

inherent in VaR. Expected shortfall is the conditional expectation of loss given

that the loss is beyond the VaR level; that is, the expected shortfall is defined as

follows:

ESaðX Þ ¼ E½X j X P VaRaðX Þ�: ð2Þ
The expected shortfall indicates the average loss when the loss exceeds the VaR level.

2.2. VaR and expected shortfall under normal distribution

When the profit–loss distribution is normal, VaR and expected shortfall give

essentially the same information. 5 Both VaR and expected shortfall are scalar
5 More precisely, if the profit–loss distribution belongs to the elliptical distribution family, either VaR

or expected shortfall suffice for information about loss distribution, as both would be redundant. Normal

distribution belongs to this family. See Embrechts et al. (2002), for example.
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multiples of the standard deviation. 6 Therefore, VaR provides the same information

on tail loss as does expected shortfall. For example, VaR at the 99% confidence level

is 2.33 times the standard deviation, while expected shortfall at the same confidence

level is 2.67 times the standard deviation.

In the following, we compare VaR and expected shortfall in cases where the
profit–loss distribution is not normal.
3. Tail risk of VaR: A practitioner approach

In this paper, we say that VaR has tail risk when VaR fails to summarize the rel-

ative risk of available portfolios due to its underestimation of the risk of portfolios

with fat-tailed properties and high potential for large losses. 7 The tail risk of VaR
arises because it measures only a single quantile of the profit–loss distributions, dis-

regarding any loss beyond the VaR level. 8 This may lead one to perceive securities

with higher potential for large losses as less risky than securities with lower potential

for large losses.

Yamai and Yoshiba (2002c) show that VaR and expected shortfall are free from

tail risk when the underlying profit–loss distribution is normal. 9 On the other hand,

VaR may have tail risk if the profit–loss distribution is not normal. Non-normality

of the profit–loss distribution is caused by non-linearity of the portfolio position or
non-normality of the underlying asset prices.

We illustrate the problem of tail risk with two examples 10: concentrated credit

portfolio and currency portfolio under market stress. In these examples, asset returns

have fat-tailed properties and high potential for large losses. For the first example,

we show that utility-maximizing investors with VaR constraints choose to invest

in securities with a high potential for large losses beyond the VaR level. In the second

example, we show that VaR entails tail risk when asset returns are described by the

extreme value distribution.
6 When the loss distribution is normal, expected shortfall is calculated as follows:

ESaðX Þ ¼ E½X j X P VaRaðX Þ� ¼
1

arX

ffiffiffiffiffiffi
2p

p
Z 1

VaRaðX Þ
t � e�t2=2r2X dt ¼ e�q2a=2

a
ffiffiffiffiffiffi
2p

p rX ;

where qa is the upper 100a percentile of standard normal distribution. For example, from this equation,

expected shortfall at the 99% confidence level is the standard deviation multiplied by 2.67, which is the

same level as VaR at the 99.6% confidence level.
7 See Yamai and Yoshiba (2002c) for the detail of authors� definition of tail risk.
8 A risk measure free from tail risk is not always subadditive. For example, when the underlying

distribution is generalized Pareto with large tail index (n P 1), VaR is not subadditive and has no tail risk.

See footnote 51 of Yamai and Yoshiba (2002d) for details.
9 More precisely, if the profit–loss distribution belongs to the elliptical distribution family, VaR and

expected shortfall are free from tail risk. See Theorems 14 and 15 of Yamai and Yoshiba (2002c).
10 See Yamai and Yoshiba (2002a) and Yamai and Yoshiba (2002d) for more examples of tail risk of

VaR.
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3.1. Risk control for expected utility-maximizing investors: A simple illustration

with credit portfolio

Basak and Shapiro (2001) show that utility-maximizing investors with VaR con-

straint optimally choose to construct vulnerable positions that can result in large
losses exceeding the VaR level. They demonstrate this using a dynamic portfolio

optimization framework. 11 Yamai and Yoshiba (2002a) illustrate this problem using

simple examples of far-out-of-the-money option and a concentrated credit portfolio.

This section provides a simple illustration of how the tail risk of VaR may result

in serious practical problems in credit portfolios. 12 The case discussed here was

introduced in Yamai and Yoshiba (2002a).

Suppose that an investor invests 100 million yen in the following four mutual

funds: (1) concentrated portfolio A, consisting of only one defaultable bond with
a 4% default rate; (2) concentrated portfolio B, consisting of only one defaultable

bond with a 0.5% default rate; (3) a diversified portfolio that consists of 100 defaul-

table bonds with a 5% default rate; and (4) a risk-free asset. To simplify, we assume

that the profiles of all bonds in these funds are as follows: the maturity is one year,

occurrences of default events are mutually independent, the recovery rate is 10%, and

yield to maturity is equal to the coupon rate. We further assume that the yield to

maturity, default rate, and recovery rate are fixed until maturity. Table 1 gives the

specific profiles of bonds included in these mutual funds.
Assuming logarithmic utility, the expected utility of the investor is given below. 13

E½uðW Þ� ¼
X100
n¼0

0:96 � 0:995 � 0:05n � 0:95100�n�100Cn � ln ~wð1; 1Þ

þ
X100
n¼0

0:04 � 0:995 � 0:05n � 0:95100�n�100Cn � ln ~wð0:1; 1Þ

þ
X100
n¼0

0:96 � 0:005 � 0:05n � 0:95100�n�100Cn � ln ~wð1; 0:1Þ

þ
X100
n¼0

0:04 � 0:005 � 0:05n � 0:95100�n�100Cn � ln ~wð0:1; 0:1Þ;

ð3Þ

where

~wða; bÞ ¼ 1:0475aX 1 þ 1:0075bX 2 þ 1:055X 3

100� 0:9n
100

þ 1:0025ðW 0 � X 1 � X 2 � X 3Þ;
11 For general issues in optimization of VaR and expected shortfall, see Rockafellar and Uryasev

(2002), and Alexander et al. (2004).
12 For VaR and expected shortfall in credit portfolio, see also Frey and McNeil (2002), for example.
13 For example, the probability that both of the concentrated portfolios A and B do not default and

that n bonds of the diversified portfolio default is 0.96 Æ 0.995 Æ 0.05n Æ 0.95100�n Æ 100Cn where mCn is the

number of combinations choosing n out of m.



Table 1

Profiles of bonds included in the mutual funds

Number of bonds

included

Coupon

(%)

Default

rate (%)

Recovery

rate (%)

Concentrated portfolio A 1 4.75 4.00 10

Concentrated portfolio B 1 0.75 0.50 10

Diversified portfolio 100 5.50 5.00 10

Risk-free asset 1 0.25 0.00 –

Note. The occurrences of defaults are mutually independent.
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W final wealth,

W0 initial wealth,

X1 amount invested in concentrated portfolio A,

X2 amount invested in concentrated portfolio B,

X3 amount invested in diversified portfolio.

We analyze the impact of risk management with VaR and expected shortfall on

the rational investor�s decisions by solving the following five optimization problems,
where the holding period is one year. 14

(1) No constraint

max
fX 1;X 2;X 3g

E½uðW Þ�:

(2) Constraint with VaR at the 95% confidence level

max
fX 1;X 2;X 3g

E½uðW Þ�

subject to VaRð95% confidence levelÞ 6 3:

(3) Constraint with expected shortfall at the 95% confidence level

max
fX 1;X 2;X 3g

E½uðW Þ�

subject to expected shortfallð95% confidence levelÞ 6 3:5:

(4) Constraint with VaR at the 99% confidence level

max
fX 1;X 2;X 3g

E½uðW Þ�

subject to VaRð99% confidence levelÞ 6 3:

(5) Constraint with expected shortfall at the 99% confidence level

max
fX 1;X 2;X 3g

E½uðW Þ�

subject to expected shortfallð99% confidence levelÞ 6 3:5:
14 We solved the optimization problems using a quasi Newton method in Microsoft Excel solver, and

checked the optimality by plotting investor�s utility in the space of portfolio weight. Here, we focus on the

analyses of solutions rather than the numerical method to get them.



Table 2

Portfolio profiles (95% confidence level)

No

constraint (1)

VaR

constrainta (2)

Expected shortfall

constraintb (3)

Portfolio (%)

Concentrated portfolio A

(default rate: 4%)

7.4 20.1 2.9

Concentrated portfolio B

(default rate: 0.5%)

0.0 0.0 2.0

Diversified portfolio 92.6 79.9 95.1

Risk-free asset 0.0 0.0 0.0

Risk measure (million yen)

VaR 3.35 3.00 2.75

Expected shortfall 5.26 14.35 3.50

a Optimize with the constraint that VaR at the 95% confidence level is less than or equal to 3.
b Optimize with the constraint that expected shortfall at the 95% confidence level is less than or equal

to 3.5.
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We analyze the effect of risk management with VaR and expected shortfall by

comparing solutions (2)–(5) with solution (1).

Table 2 shows the results of the optimization problem with a 95% VaR or

expected shortfall constraint. The solution of the optimization problem with a

95% VaR constraint ((2) in Table 2) shows that the amount invested in concentrated
portfolio A is greater than that of solution (1); that is, the portfolio concentration is

enhanced by risk management with VaR. Fig. 1 depicts the tails of the cumulative

probability distributions of the profit–loss of the portfolios. It shows how risk

management with VaR brings about this undesirable result.
0%

5%

10%

-20 -15 -10 -5

No constraint (solid line)  (1)

VaR constraint (broken line)  (2)

Expected shortfall constraint (dotted line)  (3)

Profit-loss

Cumulative probability

Fig. 1. Cumulative probability of profit–loss: the left tail (95% confidence level).
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When constrained by VaR, the investor must reduce his/her investment in the

diversified portfolio to reduce maximum losses with a 95% confidence level. Instead,

he/she should increase investments either in concentrated portfolios or in a risk-free

asset. Concentrated portfolio A has little effect on VaR, since the probability of de-

fault lies beyond the 95% confidence interval. Concentrated portfolio A also yields a
higher return than other assets, except diversified portfolio. Thus, the investor

chooses to invest in concentrated portfolio A. Although VaR is reduced, the optimal

portfolio is vulnerable due to its concentration and larger losses under conditions be-

yond the VaR level.

On the other hand, when constrained by expected shortfall ((3) in Table 2), the

investor optimally reallocates his investment to a risk-free asset, significantly reduc-

ing the portfolio risk. The investor cannot increase his investment in the concen-

trated portfolio without affecting expected shortfall, which takes into account the
losses beyond the VaR level. Unlike risk management with VaR, risk management

with expected shortfall does not enhance credit concentration.

Next, we examine whether raising the confidence level of VaR solves the problem.

Table 3 gives the results of the optimization problem with a 99% VaR or expected

shortfall constraint. It shows that when constrained by VaR at the 99% confidence

level, the investor optimally chooses to increase his/her investment in concentrated

portfolio B because the default rate of concentrated portfolio B is 0.5%, outside

the confidence level of VaR. On the other hand, risk management with expected
shortfall reduces the potential loss beyond the VaR level by reducing credit

concentration.

VaR may enhance credit concentration because it disregards losses beyond the

VaR level, even at high confidence levels. On the other hand, expected shortfall

reduces credit concentration because it takes into account losses beyond the VaR le-

vel as a conditional expectation.
Table 3

Portfolio profiles (99% confidence level)

No

constraint (1)

VaR

constrainta (4)

Expected shortfall

constraintb (5)

Portfolio (%)

Concentrated portfolio A

(default rate: 4%)

7.4 0.7 0.7

Concentrated portfolio B

(default rate: 0.5%)

0.0 18.8 0.5

Diversified portfolio 92.6 64.9 65.6

Risk-free asset 0.0 15.6 33.2

Risk measure (million yen)

VaR 6.77 3.00 3.13

Expected shortfall 7.83 7.33 3.50

a Optimize with the constraint that VaR at the 99% confidence level is less than or equal to 3.
b Optimize with the constraint that expected shortfall at the 99% confidence level is less than or equal

to 3.5.
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Fig. 2. Cumulative distribution of profit–loss when tail risk of VaR occurs.
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This illustration suggests that if investors can invest in assets whose loss is infre-

quent but large (such as concentrated credit portfolios), the problem of tail risk can
be serious. Furthermore, investors can manipulate the profit–loss distribution using

those assets, so that VaR becomes small while the tail becomes fat (see Fig. 2).

In general, expected shortfall is more consistent with expected utility maximiza-

tion under less stringent conditions than VaR. Yamai and Yoshiba (2002c) show

that VaR is consistent with expected utility maximization when portfolios are ranked

by first-order stochastic dominance, while expected shortfall is consistent with ex-

pected utility maximization when portfolios are ranked by second-order stochastic

dominance. Thus, VaR is more likely to have unanticipated effect on utility maximi-
zation than expected shortfall.
3.2. Risk measurement under market stress

In this section, we show that VaR may entail tail risk if the underlying asset price

fluctuations are extreme; in other words, if the market is under stress.

A typical case of market stress can be seen in the financial market crisis of fall

1998. Concerning this crisis, the BIS Committee on the Global Financial System
(1999) notes that ‘‘a large majority of interviewees admitted that last autumn�s events
were in the �tails� of distributions and that VaR models were useless for measuring

and monitoring market risk’’. In this section, we focus on this particular case.

We assume that the multivariate extreme value distributions represent asset re-

turns under market stress. Under this assumption, Yamai and Yoshiba (2002d)

investigate the conditions of the tail risk of VaR and expected shortfall employing

asset return simulation with those distributions.
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We introduce a case study from Yamai and Yoshiba (2002d), with a brief expla-

nation of multivariate extreme value theory.

We analyze the daily logarithmic changes in currency exchange rate of three

industrialized countries and 18 emerging economies. The raw historical data are

the exchange rates per one US dollar from November 1, 1993 to October 29,
2001. We examine the exchange rates for the 21 currencies and among those the

dependence structures of five currencies in Southeast Asian countries.

3.2.1. Extreme value theory and copulas in financial risk estimation

Before introducing our analyses, we briefly describe extreme value theory and

copulas. First, we examine one asset Z, in our case, daily logarithmic changes in each

of the exchange rates for the 21 currencies. Let F be the distribution function of Z.

The distribution function of (Z � h) given that Z exceeds h is

F hðxÞ ¼ PrfZ � h 6 x j Z > hg ¼ F ðxÞ � F ðhÞ
1� F ðhÞ ; h 6 x: ð4Þ

Univariate extreme value theory says that the distribution function Fh converges to a

generalized Pareto distribution Gn,r(x) when the value of h is sufficiently large (see

Embrechts et al., 1997 for example).

Gn;rðxÞ ¼ 1� 1þ n � x
r

� ��1=n
; x P 0: ð5Þ

With Eqs. (4) and (5), when the value of h is sufficiently large, the distribution func-

tion of exceedances max(Z,h), denoted by Fm(x), is approximated as follows:

F mðxÞ � ð1� F ðhÞÞGn;rðx� hÞ þ F ðhÞ ¼ 1� p
�
1þ n � x� h

r

��1=n

; x P h;

ð6Þ

where p = 1� F(h) is the tail probability. The distribution is described by three

parameters: the tail index n, the scale parameter r, and the tail probability p. The tail

index n represents how fat the tail of the distribution is; when n is large, the tail is fat.
The scale parameter r represents how dispersed the distribution is; when r is large,

the distribution is highly dispersed. Assuming the confidence level of VaR and ex-

pected shortfall is less than p, we use this distribution of exceedances to calculate
VaR and expected shortfall.

Next, we notice a pair of two assets (Z1,Z2). To identify joint distribution of the

two random variables, we need to specify the dependence structure of the two var-

iables other than marginal distribution functions. A copula is useful for describing

the dependence structure. A copula C is a function that satisfies the relationship

F ðx1; x2Þ ¼ CðF 1ðx1Þ; F 2ðx2ÞÞ; ð7Þ
where F(x1,x2) is the joint distribution function P[Z1 6 x1,Z2 6 x2], and

(F1(x1),F2(x2)) the marginal distribution functions (P[Z1 6 x1],P[Z2 6 x2]). The

above Eq. (7) shows that the copula represents the dependence structure in the joint



Y. Yamai, T. Yoshiba / Journal of Banking & Finance 29 (2005) 997–1015 1007
distribution. The copula is the part not described by the marginals and is invariant

under the transformation of the marginals. 15

Here, we note the distribution of the bivariate exceedances m(h1,h2)(Z1,Z2) =

(max(Z1,h1), (max(Z2,h2)) with some threshold h = (h1,h2). Multivariate extreme

value theory says that the marginal distributions of mðh1;h2ÞðZ1; Z2Þ converge to the
distribution of Eq. (6) and that the copulas of mðh1;h2ÞðZ1; Z2Þ converge to a class of

copulas, as the threshold h = (h1,h2) becomes large. Ledford and Tawn (1996) show

that copulas in the class satisfy the following equation:

Cðu1; u2Þ ¼ exp �V � 1

ln u1
;� 1

ln u2

� �� �
; ð8Þ

where

V ðz1; z2Þ ¼
Z 1

0

maxfsz�1
1 ; ð1� sÞz�1

2 gdHðsÞ ð9Þ

and H is a non-negative measure on [0,1] satisfyingZ 1

0

sdHðsÞ ¼
Z 1

0

ð1� sÞdHðsÞ ¼ 1: ð10Þ

Following Hefferman (2000), we call this type of copula the bivariate extreme value

copula.

One bivariate extreme value copula is the Gumbel copula. The Gumbel copula is

expressed by

Cðu1; u2Þ ¼ expf�½ð� ln u1Þa þ ð� ln u2Þa�1=ag; ð11Þ
for a parameter a 2 [1,1]. 16 The dependence parameter a controls the level of

dependence between random variables. When a = 1, it corresponds to full depend-

ence; while a = 1 corresponds to independence.

3.2.2. Tail risk of VaR for each currency (univariate analyses)

Let us compare two different losses denoted by random variables Z1 and Z2. As in

Eq. (6), the distribution functions of exceedances m(Z1) = max(Z1,h) and

m(Z2) = max(Z2,h) are approximated by Eqs. (12) and (13) if h is sufficiently large.

F mðZ1ÞðxÞ ¼ 1� p 1þ n1 �
x� h
r1

� ��1=n1

; ð12Þ

F mðZ2ÞðxÞ ¼ 1� p 1þ n2 �
x� h
r2

� ��1=n2

: ð13Þ
15 See Embrechts et al. (2002) , Joe (1997) , Nelsen (1999) , Frees and Valdez (1998) , etc. for details. See

Jouanin et al. (2004) and Geman and Kharoubi (2004) for financial application of copula.
16 Eq. (11) is obtained by defining V of Eq. (9) as V ðz1; z2Þ ¼ ðz�a

1 þ z�a
2 Þ1=a.
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Fig. 3. Example of the distribution of exceedances.
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Given n2 > n1, Z2 has a fatter tail than Z1. In this case, if q(n1) is larger than q(n2) for
some risk measure q(Æ), the risk measure q(Æ) has tail risk since Z2 has a higher poten-
tial for larger loss than Z1.

To illustrate an example of the tail risk of VaR, Fig. 3 plots Eqs. (12) and (13) for

the following parameter values: tail probability p = 0.1; threshold h = 0.05; tail indi-

ces n1 = 0.1 and n2 = 0.5; and scale parameters r1 = 0.05 and r2 = 0.035. In this

example, n2 > n1 and the VaR at the 95% confidence level is higher for Z1 than

for Z2. VaR at the 95% confidence level has tail risk as the distribution functions

intersect beyond the VaR confidence level.

We next estimate the parameters of the distribution shown in Eq. (6) using the
daily logarithmic changes in each of the exchange rates for the 21 currencies. We em-

ploy the maximum likelihood method described in Embrechts et al. (1997) and

McNeil (2000). 17 We vary the tail probability p as 1%, 2%, . . ., 10%, 18 and estimate

the parameters n, r, and h for each. We then calculate the VaR and expected short-

fall at confidence levels of 95% and 99% using the estimated parameter values (see

Yamai and Yoshiba (2002d) for details). Table 4 shows a part of the estimation
17 For estimation of parameters by the maximum likelihood method, we use the S-Plus function

libraries of McNeil�s Evis. With a limited sample of excess data, some authors apply the Bayesian Markov

chain Monte Carlo to estimate parameters (see Coles, 2001; Medova and Kyriacou, 2002, for example).
18 The choice of threshold is crucial in applying extreme value distribution to real data. The issue of the

choice implies a balance between bias and variance. If a threshold is too low, it is likely to violate the

asymptotic properties, leading to bias; if it is too high, a threshold will generate few excesses, leading to

high variance (see Coles, 2001). We followed the approach described in Embrechts et al. (1997). We plot

empirical mean excess functions, estimated tail indexes for varied thresholds, and checked whether our

choice of threshold is valid. The method to choose thresholds are proposed by various authors. Danı́elsson

et al. (2001) propose a two step subsample bootstrap method to determine the optimal threshold that

minimizes the asymptotic mean squared error.



Table 4

Tail indices and VaR of some currencies

Japanese

Yen

Malaysian

Ringgit

South Korean

Won

Thai

Baht

Chilean

Peso

Mexican

New Peso

Venezuelan

Bolivar

n 0.080 0.737 0.685 0.430 0.177 0.646 0.862

VaR(95%) (%) 1.00 0.43 0.73 0.77 0.52 0.84 0.34
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results of the tail indices n and VaR at a 95% confidence level for the Japanese yen

and six emerging currencies, given that p is 10%.

Table 4 shows that VaR at the 95% confidence level has tail risk. First, the tail is
fatter for emerging economies than for Japan. The tail indices n are substantially lar-

ger for emerging economies than for Japan. The currencies of emerging economies

pose a higher potential for large losses than the Japanese yen. Second, the VaR at

the 95% level for the Japanese yen is larger than that for emerging economies. Thus,

VaR at the 95% level has tail risk.

For detailed results, including analyses of expected shortfall, see Yamai and

Yoshiba (2002d).

3.2.3. Tail risk of VaR for selected pairs of currencies (bivariate analyses)

Below, we provide an example in which VaR has tail risk in certain pairs of ex-

change rate data, selecting five currencies in Southeast Asian countries: the Indone-

sian rupiah, the Malaysian ringgit, the Philippine peso, the Singapore dollar, and the

Thai baht.

Following the method of Longin and Solnik (2001), we assume that the marginal

distributions of bivariate exceedances are approximated by (6) and that their copula

is approximated by the Gumbel copula. Given tail probabilities p1 and p2, we esti-
mate the following parameters: the tail indices of the marginals (n1 and n2), the scale
parameters of the marginals (r1 and r2), the thresholds (h1 and h2), and the depend-

ence parameter of the Gumbel copula (a).
We estimate those parameters on the right tails of the logarithmic changes of

each pair of Southeast Asian currencies by the maximum likelihood method for

a tail probability of 10% (p1 = p2 = 0.1). Table 5 shows the results of the

estimation.

In the bivariate analyses, we focus on the dependence structure rather than the
tail-fatness of the marginals. We assume that the dependence structure is represented

by the copula. We adopt the Gumbel, Gaussian, and Frank copulas to represent dif-

ferent tail dependencies. Among the Gumbel, Gaussian and Frank copulas, the

Gumbel copula has the strongest tail dependence of the two random variables,

and the Frank copula the weakest. Changing from the Gumbel to the Gaussian

and Frank copulas weakens tail dependence. 19
19 The Gumbel copula corresponds to asymptotic dependence and the Gaussian and Frank copulas

correspond to asymptotic independence (Ledford and Tawn, 1996).



Table 5

Estimates of the bivariate extreme value distribution of daily logarithmic changes in southeast Asian

exchange rates (Gumbel copula)

Currencies a n1 r1 h1 n2 r2 h2

Indonesia (Rupiah) Malaysia (Ringgit) 1.2658 0.4088 0.0128 0.0084 0.7371 0.0030 0.0016

Indonesia (Rupiah) Philippines (Peso) 1.3056 0.4088 0.0128 0.0084 0.4156 0.0046 0.0035

Indonesia (Rupiah) Singapore (Dollar) 1.3316 0.4088 0.0128 0.0084 0.3256 0.0020 0.0028

Indonesia (Rupiah) Thailand (Baht) 1.3855 0.4088 0.0128 0.0084 0.4298 0.0051 0.0035

Malaysia (Ringgit) Philippines (Peso) 1.2578 0.7371 0.0030 0.0016 0.4156 0.0046 0.0035

Malaysia (Ringgit) Singapore (Dollar) 1.5288 0.7371 0.0030 0.0016 0.3256 0.0020 0.0028

Malaysia (Ringgit) Thailand (Baht) 1.3186 0.7371 0.0030 0.0016 0.4298 0.0051 0.0035

Philippines (Peso) Singapore (Dollar) 1.3120 0.4156 0.0046 0.0035 0.3256 0.0020 0.0028

Philippines (Peso) Thailand (Baht) 1.4267 0.4156 0.0046 0.0035 0.4298 0.0051 0.0035

Singapore (Dollar) Thailand (Baht) 1.4364 0.3256 0.0020 0.0028 0.4298 0.0051 0.0035

Note. The foreign exchange rate data is sourced from Bloomberg. The estimation period is from

November 1, 1993 to October 29, 2001.
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The Gaussian copula is

Cðu; vÞ ¼ UqðU�1ðuÞ;U�1ðvÞÞ; ð14Þ
where Uq is the distribution function of a bivariate standard normal distribution with

a correlation coefficient q, and U�1 is the inverse function of the distribution function

for the univariate standard normal distribution.

The Frank copula 20 is

Cðu; vÞ ¼ � 1

d
ln

1� e�d � ð1� e�duÞð1� e�dvÞ
1� e�d

� �
: ð15Þ

The dependence parameters q and d control the level of dependence between random

variables. For the Gaussian copula, q = ± 1 corresponds to full dependence while

q = 0 corresponds to independence. For the Frank copula, d = ± 1 corresponds

to full dependence while d = 0 corresponds to independence.

In comparing the results using the three copulas, we set the values of the depend-
ence parameters of those copulas (Gumbel: a, Gaussian: q, and Frank: d) so that

Spearman�s rho (qS) is equal across those copulas. 21 By setting Spearman�s rho as

equivalent for all the three copulas, we can eliminate the effect of global dependence

and examine the pure effect of tail dependence, since Spearman�s rho is a measure of

global dependence.

After the estimation of the tail indices (n1 and n2), the scale parameters (r1 and

r2), the thresholds (h1 and h2), and the dependence parameter of the Gumbel copula
20 This definition of the Frank copula follows Joe (1997).
21 Spearman�s rho qS (Z1,Z2) is a rank correlation defined by the linear correlation of the marginals,

as qSðZ1;Z2Þ �
CovðF Z1 ðZ1Þ;F Z2 ðZ2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ½F Z1 ðZ1Þ�V ½F Z2 ðZ2Þ�

p . Here, we note F1(Z1) and F2(Z2) are uniform random variables on

[0, 1], and V[F1(Z1)] = V[F2(Z2)] = 1/12. Using copula C(u,v), Spearman�s rho is expressed as

qS(Z1,Z2) = 12��{C(u,v) � uv}dudv, where U � F1(Z1) and V � F2(Z2). See Frees and Valdez (1998).



Table 6

VaR of the simulated sums of the foreign exchange rates

Currencies VaR (95%) VaR (99%)

Frank

(%)

Gaussian

(%)

Gumbel

(%)

Frank

(%)

Gaussian

(%)

Gumbel

(%)

Indonesia Malaysia 2.337 2.331 2.257 6.852 6.958 7.041

Indonesia Philippines 2.464 2.464 2.408 6.573 6.746 7.002

Indonesia Singapore 2.118 2.133 2.132 5.993 6.094 6.270

Indonesia Thailand 2.562 2.551 2.482 6.788 7.015 7.298

Malaysia Philippines 1.161 1.154 1.111 3.427 3.504 3.570

Malaysia Singapore 0.844 0.834 0.811 2.442 2.558 2.677

Malaysia Thailand 1.232 1.220 1.166 3.692 3.778 3.850

Philippines Singapore 1.043 1.047 1.035 2.497 2.588 2.720

Philippines Thailand 1.455 1.440 1.395 3.650 3.802 3.992

Singapore Thailand 1.114 1.114 1.102 2.754 2.882 3.037
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(a) as in Table 5, we calculate Spearman�s rho (qS) using a numerical integration.

And we determine the dependence parameter of the Gaussian copula (q) and that

of the Frank copula (d) so that Spearman�s rho (qS) is equal to the Gumbel copula. 22

We then simulate logarithmic changes in two exchange rates Xi,1 and Xi,2 with dis-

tributions whose marginals are Eq. (6), and whose copulas are the Gumbel, Gaus-

sian, and Frank copula. Finally, we calculate the VaR and expected shortfall of
the sums of the logarithmic changes in two exchange rates, Xi,1 + Xi, 2, running ten

million simulations for each case.

Table 6 shows a part of the results from those simulations. We find that for most

pairs the VaR at the 95% confidence level has tail risk, since the VaRs are larger for

the Frank copula (the weakest tail dependence) than for the Gumbel copula (the

strongest tail dependence). This means that VaR fails to take into account tail

dependencies among exchange rates in emerging economies. On the other hand,

the VaRs at the 99% confidence level in this example have no tail risk.
For detailed results, see Yamai and Yoshiba (2002d).
4. Estimation error of VaR and expected shortfall

Expected shortfall has better properties than VaR with respect to tail risk. How-

ever, expected shortfall does not always yield better results than VaR. In this chap-

ter, we argue that expected shortfall is likely to result in worse estimates than VaR if
we adopt simulation methods for estimation.
22 To find the parameters with the same Spearman�s rho, we use FindRoot function of Mathematica

with three defined functions to calculate Spearman�s rho for each parameter of the Gaussian, Frank, and

Gumbel copulas. Spearman�s rho for Gaussian copula is qSðZ1; Z2Þ ¼ p
6
arcsinðqÞ. Spearman�s rho for the

Frank copula is represented by ‘‘Debye’’ functions (see Frees and Valdez, 1998). Spearman�s rho for the

Gumbel copula is not a closed-form function of a, and we calculate it by numerical integration using a

general expression qS(Z1,Z2) = 12��{C(u,v)�uv}dudv.
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Estimates of VaR and expected shortfall are affected by estimation error, such as

limited sample size results in the sampling fluctuation. Suppose that we estimate the

VaR of a given portfolio by Monte Carlo simulations. The VaR estimates vary

according to the realizations of random numbers. To reduce estimation error, we

must increase the sample size of the simulations, which is a highly time-intensive
task. This chapter compares the estimation errors of VaR and those of expected

shortfall.

We assume that underlying asset prices have generalized Pareto distribution, as

introduced in the former chapter,

F mðxÞ � ð1� F ðhÞÞGn;rðx� hÞ þ F ðhÞ ¼ 1� p 1þ n � x� h
r

� ��1=n

; x P h:

ð16Þ
The distribution is described by three parameters: the tail index n, the scale param-

eter r, and the tail probability p. Since tail index n represents how fat the tail of the

distribution is, the tail is fat when n is large.

We evaluate the estimation errors of VaR and expected shortfall by obtaining

10,000 estimates of those risk measures. To obtain each estimate, we run Monte
Carlo simulations with a sample size of 10,000, assuming that the underlying loss

have generalized Pareto distributions with n = 0.1,0.3, 0.5,0.7, 0.9, 23 and obtain

VaR and expected shortfall 24 at the 99% confidence level with each tail index

n. 25 We iterate this procedure 10,000 times, and obtain 10,000 estimates of VaR

and expected shortfall. Then we calculate the average value, the standard deviation,

and the 95% confidence level of those estimates. The estimation errors of VaR and

expected shortfall are compared by relative standard deviation (the standard devia-

tion divided by the average). Table 7 summarizes the results. Fig. 4 depicts the
relative standard deviations.

The estimation error of expected shortfall is larger than for VaR when the under-

lying loss distribution is fat-tailed. As n approaches one (i.e., as the underlying loss

distribution becomes fat-tailed), the relative standard deviation of the expected

shortfall estimate becomes much larger than that of the VaR estimate. For

n = 0.9, the relative standard deviation of the expected shortfall estimate is more

than 60 times that of the VaR estimate. On the other hand, when n is close to zero,

the relative standard deviation of VaR and expected shortfall estimates are both
small and nearly equivalent.
23 For simplicity, we set other parameters as r = 1 and p = 1 (h = 0).
24 Under generalized Pareto distribution, VaR and expected shortfall are analytically solved. However,

we use a generalized Pareto distribution to obtain the simulation estimates of VaR and expected shortfall

in order to illustrate how the tail fatness of an underlying distribution affects estimation errors. Yamai and

Yoshiba (2002b) derive the same result under stable distribution, where VaR and expected shortfall are not

solved analytically.
25 The estimate of VaR at the 99% confidence interval is in the upper one percentile of the empirical loss

distribution. For the sample size 10,000, we take the VaR estimate as the 100th largest sample of loss; That

is, we take X(100) as the VaR estimate where the sequence X(1), . . . ,X(100), . . . ,X(10,000) is the loss sample

rearranged in decreasing order. We take the first 100 loss averages of the rearranged sample as the

expected shortfall estimate.
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Fig. 4. Relative standard deviation of estimates (solid line: expected shortfall, dotted line: VaR).

Table 7

Estimates of VaR and expected shortfall under generalized Pareto distributions

n Risk measures Average

(a)

S.D.

(b)

Relative S.D.

(c) = (b)/(a)

Confidence

interval (95%)

0.1 VaR 5.84 0.16 0.027 [5.59–6.11]

Expected Shortfall 7.58 0.26 0.034 [7.16–8.03]

0.3 VaR 9.92 0.40 0.040 [9.29–10.60]

Expected Shortfall 15.54 1.04 0.067 [13.99–17.35]

0.5 VaR 17.97 1.00 0.056 [16.40–19.68]

Expected Shortfall 37.68 6.78 0.180 [30.81–47.10]

0.7 VaR 34.40 2.51 0.073 [30.51–38.76]

Expected Shortfall 115.55 111.64 0.966 [76.04–178.41]

0.9 VaR 68.92 6.32 0.092 [59.25–79.97]

Expected Shortfall 535.15 3027.57 5.657 [208.17–998.51]
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This result can be explained as follows: when the underlying distribution is fat-

tailed, the probability of infrequent and large loss is high. The expected shortfall esti-

mates are affected by whether large and infrequent loss is realized in the obtained

sample, since expected shortfall considers the right tail of the loss distribution. On

the other hand, the VaR estimates are less affected by large and infrequent loss than

the expected shortfall estimates, since the VaR method does not take into regard loss

beyond the VaR level. Therefore, when the underlying loss distribution becomes

more fat-tailed, the expected shortfall estimates become more varied due to infre-
quent and large losses, and their estimation error grows larger than the estimation

error of VaR.

We also investigate whether the increase in sample size reduces the estimation er-

ror of expected shortfall. We run 10,000 sets of Monte Carlo simulations with sample

sizes of 10,000, 100,000, and 1,000,000 for n = 0.5,0.7,0.9. Table 8 shows the



Table 8

Convergence of expected shortfall estimates

Sample size n = 0.5 n = 0.7 n = 0.9

Relative

S.D.

Confidence

interval (95%)

Relative

S.D.

Confidence

interval (95%)

Relative

S.D.

Confidence

interval (95%)

10,000 0.180 [30.81–47.10] 0.966 [76.04–178.41] 5.657 [208.17–998.51]

100,000 0.058 [35.24–41.42] 0.328 [96.07–150.29] 2.168 [307.63–939.23]

1,000,000 0.020 [36.97–39.19] 0.159 [106.73–134.55] 1.598 [387.66–905.40]
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average, the standard deviation, and the 95% confidence interval of those 10,000

estimates.

The increase in sample size from 10,000 to 1,000,000 reduces the relative standard

deviations (the standard deviation divided by the average) of the expected shortfall

estimates. 26
5. Concluding remarks

We have compared VaR with expected shortfall, emphasizing the problem of tail

risk, or the problem whereby VaR disregards losses beyond the VaR level. This

problem can cause serious real-world problems, since information provided by

VaR may mislead investors. Investors can safeguard against this problem by adopt-
ing expected shortfall, since this method also considers losses beyond the VaR level.

Expected shortfall is a better risk measure than VaR in terms of tail risk.

The advantages of expected shortfall do not come without certain disadvantages.

When the underlying distribution is fat-tailed, the estimation errors of expected

shortfall are much greater than those of VaR. To reduce estimation error, we need

to increase the sample size of the simulation. Thus, expected shortfall is most costly

when it most needs to be free from tail risk under the fat-tailed distribution.

These findings imply that the use of a single risk measure should not dominate
financial risk management. Each risk measure offers its own advantages and disad-

vantages. Complementing VaR with expected shortfall represents an effective way to

provide more comprehensive risk monitoring.
References

Acerbi, C., 2004. Coherent representations of subjective risk-aversion. In: Szegö, G. (Ed.), Risk Measures
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