Robust Performance Hypothesis Testing with the Sharpe Ratio

Olivier Ledoit Michael Wolf

Institute for Empirical Research in Economics
University of Zurich
Outline

1. The Problem

2. Solutions
 - HAC Inference
 - Bootstrap Inference

3. Simulations

4. Empirical Applications

5. Conclusions
Outline

1. The Problem

2. Solutions
 - HAC Inference
 - Bootstrap Inference

3. Simulations

4. Empirical Applications

5. Conclusions
General Set-Up & Notation

We use the same notation as Jobson and Korkie (1981):

- There are two investment strategies i and n
- Their excess returns are r_{ti} and r_{tn}, for $t = 1, \ldots, T$
- Bivariate return series is assumed stationary with

$$\mu = \begin{pmatrix} \mu_i \\ \mu_n \end{pmatrix} \quad \text{and} \quad \Sigma = \begin{pmatrix} \sigma_i^2 & \sigma_{in} \\ \sigma_{in} & \sigma_n^2 \end{pmatrix}$$
General Set-Up & Notation

We use the same notation as Jobson and Korkie (1981):

- There are two investment strategies i and n
- Their excess returns are r_{ti} and r_{tn}, for $t = 1, \ldots, T$
- Bivariate return series is assumed stationary with

\[
\mu = \begin{pmatrix}
\mu_i \\
\mu_n
\end{pmatrix}
\quad \text{and} \quad
\Sigma = \begin{pmatrix}
\sigma^2_i & \sigma_{in} \\
\sigma_{in} & \sigma^2_n
\end{pmatrix}
\]

Parameter of interest:

- Difference between the two Sharpe ratios:

\[
\Delta = Sh_i - Sh_n = \frac{\mu_i}{\sigma_i} - \frac{\mu_n}{\sigma_n}
\]

- Estimator is given by:

\[
\hat{\Delta} = \hat{Sh}_i - \hat{Sh}_n = \frac{\hat{\mu}_i}{\hat{\sigma}_i} - \frac{\hat{\mu}_n}{\hat{\sigma}_n}
\]

Approach:
- Let $u = (\mu_i, \mu_n, \sigma^2_i, \sigma^2_n)'$ and $\hat{u} = (\hat{\mu}_i, \hat{\mu}_n, \hat{\sigma}^2_i, \hat{\sigma}^2_n)'$
- If the returns are i.i.d. bivariate normal:

 $$\sqrt{T}(\hat{u} - u) \xrightarrow{d} N(0; \Omega) \text{ with } \Omega = \begin{pmatrix}
 \sigma^2_i & \sigma_{in} & 0 & 0 \\
 \sigma_{in} & \sigma^2_n & 0 & 0 \\
 0 & 0 & 2\sigma^4_i & 2\sigma^2_{in} \\
 0 & 0 & 2\sigma^2_{in} & 2\sigma^4_n
 \end{pmatrix}$$

- Get a standard error for $\hat{\Delta}$ from $\hat{\Omega}$ and the delta method
- Allows to test $H_0: \Delta = 0$ or to compute a CI for Δ

Approach:

- Let \(u = (\mu_i, \mu_n, \sigma^2_i, \sigma^2_n)' \) and \(\hat{u} = (\hat{\mu}_i, \hat{\mu}_n, \hat{\sigma}^2_i, \hat{\sigma}^2_n)' \)
- If the returns are i.i.d. bivariate normal:

\[
\sqrt{T}(\hat{u} - u) \overset{d}{\to} N(0; \Omega) \quad \text{with} \quad \Omega = \begin{pmatrix}
\sigma^2_i & \sigma_{in} & 0 & 0 \\
\sigma_{in} & \sigma^2_n & 0 & 0 \\
0 & 0 & 2\sigma^4_i & 2\sigma^2_{in} \\
0 & 0 & 2\sigma^2_{in} & 2\sigma^4_n
\end{pmatrix}
\]

- Get a standard error for \(\hat{\Delta} \) from \(\hat{\Omega} \) and the delta method
- Allows to test \(H_0: \Delta = 0 \) or to compute a CI for \(\Delta \)

Pitfall:

- The above formula for \(\Omega \) is not robust against heavy tails or time series effects (which are typical for financial returns)
- So the corresponding inference is generally not valid
Outline

1. The Problem

2. Solutions
 - HAC Inference
 - Bootstrap Inference

3. Simulations

4. Empirical Applications

5. Conclusions
Outline

1 The Problem

2 Solutions
 - HAC Inference
 - Bootstrap Inference

3 Simulations

4 Empirical Applications

5 Conclusions
General Idea

- Let $\gamma_i = \mathbb{E}(r_{1i}^2)$, $\gamma_n = \mathbb{E}(r_{1n}^2)$, and $\nu = (\mu_i, \mu_n, \gamma_i, \gamma_n)'$. Then:

$$\Delta = f(\nu) \quad \text{with} \quad f(a, b, c, d) = \frac{a}{\sqrt{c-a^2}} - \frac{b}{\sqrt{d-b^2}}$$

- If $\sqrt{T}(\hat{\nu} - \nu) \xrightarrow{d} N(0; \Psi)$, the delta method implies:

$$\sqrt{T}(\hat{\Delta} - \Delta) \xrightarrow{d} N(0; \nabla f(\nu) \Psi \nabla f(\nu))$$
General Idea

- Let $\gamma_i = \text{E}(r_{1i}^2)$, $\gamma_n = \text{E}(r_{1n}^2)$, and $\nu = (\mu_i, \mu_n, \gamma_i, \gamma_n)'$. Then:

 $$\Delta = f(\nu) \quad \text{with} \quad f(a, b, c, d) = \frac{a}{\sqrt{c-a^2}} - \frac{b}{\sqrt{d-b^2}}$$

- If $\sqrt{T}(\hat{\nu} - \nu) \xrightarrow{d} N(0; \Psi)$, the delta method implies:

 $$\sqrt{T}(\hat{\Delta} - \Delta) \xrightarrow{d} N(0; \nabla f(\nu) \Psi \nabla f(\nu))$$

- So a standard error for $\hat{\Delta}$ is given by:

 $$s(\hat{\Delta}) = \sqrt{\frac{\nabla f(\hat{\nu}) \hat{\Psi} \nabla f(\hat{\nu})}{T}}$$
General Idea

- Let \(\gamma_i = \text{E}(r_{1i}^2) \), \(\gamma_n = \text{E}(r_{1n}^2) \), and \(v = (\mu_i, \mu_n, \gamma_i, \gamma_n)' \). Then:

\[
\Delta = f(v) \quad \text{with} \quad f(a,b,c,d) = \frac{a}{\sqrt{c-a^2}} - \frac{b}{\sqrt{d-b^2}}
\]

- If \(\sqrt{T}(\hat{v} - v) \xrightarrow{d} N(0; \Psi) \), the delta method implies:

\[
\sqrt{T}(\hat{\Delta} - \Delta) \xrightarrow{d} N(0; \nabla'f(v)\Psi\nabla f(v))
\]

- So a standard error for \(\hat{\Delta} \) is given by:

\[
s(\hat{\Delta}) = \sqrt{\frac{\nabla'f(\hat{v})\hat{\Psi}\nabla f(\hat{v})}{T}}
\]

Remaining challenge: find a consistent estimator \(\hat{\Psi} \) for \(\Psi \).
Kernel Estimator for Ψ

$$\hat{\Psi} = \hat{\Psi}_T = \frac{T}{T-4} \sum_{j=-T+1}^{T-1} k\left(\frac{j}{S_T} \right) \hat{\Gamma}_T(j)$$

Details:

- $\hat{\Gamma}_T(j) = \begin{cases}
\frac{1}{T} \sum_{t=j+1}^{T} \hat{y}_t \hat{y}_{t-j}' & \text{for } j \geq 0 \\
\frac{1}{T} \sum_{t=-j+1}^{T} \hat{y}_{t+j} \hat{y}_t' & \text{for } j < 0
\end{cases}$

- $\hat{y}_t' = (r_{ti} - \hat{\mu}_1, r_{tn} - \hat{\mu}_n, r_{ti}^2 - \hat{\gamma}_i, r_{tn}^2 - \hat{\gamma}_n)$

- $k(\cdot)$ is a kernel and S_T is a corresponding bandwidth

Specific suggestions:
- QS kernel or prewhitened QS kernel
- Data-dependent choice of bandwidth
Kernel Estimator for Ψ

$$\hat{\Psi} = \hat{\Psi}_T = \frac{T}{T-4} \sum_{j=-T+1}^{T-1} k \left(\frac{j}{S_T} \right) \hat{\Gamma}_T(j)$$

Details:
- $\hat{\Gamma}_T(j) = \begin{cases} \frac{1}{T} \sum_{t=j+1}^{T} \hat{y}_t \hat{y}'_{t-j} & \text{for } j \geq 0 \\ \frac{1}{T} \sum_{t=-j+1}^{T} \hat{y}_{t+j} \hat{y}'_{t} & \text{for } j < 0 \end{cases}$
- $\hat{y}' = (r_{ti} - \hat{\mu}_1, r_{tn} - \hat{\mu}_n, r_{ti}^2 - \hat{\gamma}_1, r_{tn}^2 - \hat{\gamma}_n)$
- $k(\cdot)$ is a kernel and S_T is a corresponding bandwidth

Specific suggestions:
- QS kernel or prewhitened QS kernel
- Data-dependent choice of bandwidth
Resulting Inference

- Standard error for $\hat{\Delta}$:
 $$s(\hat{\Delta}) = \sqrt{\frac{\nabla' f(\hat{\theta}) \Psi \nabla f(\hat{\theta})}{T}}$$

- A two-sided p-value for H: $\Delta = 0$ is given by:
 $$\hat{p} = 2\Phi\left(-\frac{|\hat{\Delta}|}{s(\hat{\Delta})}\right)$$
 where $\Phi(\cdot)$ denotes the c.d.f. of $N(0,1)$

- A two-sided confidence interval for Δ is given by
 $$\hat{\Delta} \pm z_{1-\alpha/2} s(\hat{\Delta})$$
 where z_λ denotes the λ quantile of $N(0,1)$
Two Remarks

Remark:
- Lo (2002) discusses inference for a single Sharpe Ratio Sh
- Section “IID Returns” corresponds to Memmel (2003)
- Section “Non-IID Returns” corresponds to HAC inference (though he uses an ‘inferior’ kernel and does not deal with the choice of the bandwidth)
Two Remarks

Remark:
- Lo (2002) discusses inference for a single Sharpe Ratio Sh
- Section “IID Returns” corresponds to Memmel (2003)
- Section “Non-IID Returns” corresponds to HAC inference (though he uses an ‘inferior’ kernel and does not deal with the choice of the bandwidth)

Remark:
- Opdyke (2007) discusses inference for both Sh and Δ
- First, he considers general i.i.d. data
- Then, he considers general time series data
- But his formulas for the time series case are actually equivalent to those for the i.i.d. case
Outline

1. The Problem

2. Solutions
 - HAC Inference
 - Bootstrap Inference

3. Simulations

4. Empirical Applications

5. Conclusions
Basic Idea

Construct a two-sided symmetric confidence interval for Δ:

- Approximate the ‘absolute’ sampling distribution of the studentized statistic using the bootstrap:

\[
L\left(\left|\frac{\hat{\Delta} - \Delta}{s(\hat{\Delta})}\right|\right) \approx L\left(\left|\frac{\hat{\Delta}^* - \hat{\Delta}}{s(\hat{\Delta}^*)}\right|\right)
\]

where \(L(\cdot)\) denotes the law of a random variable
Basic Idea

Construct a two-sided symmetric confidence interval for Δ:

- Approximate the ‘absolute’ sampling distribution of the studentized statistic using the bootstrap:

\[
L\left(\frac{|\hat{\Delta} - \Delta|}{s(\hat{\Delta})}\right) \approx L\left(\frac{|\hat{\Delta}^* - \hat{\Delta}|}{s(\hat{\Delta}^*)}\right)
\]

where $L(\cdot)$ denotes the law of a random variable

- Let $z^*_{|\cdot|,\lambda}$ be a λ quantile of the r.h.s. distribution

- A two-sided symmetric confidence interval is given by:

\[
\hat{\Delta} \pm z^*_{|\cdot|,1-\alpha} s(\hat{\Delta})
\]

Reject $H_0: \Delta = 0$ at level α if 0 is not contained in the CI.
Basic Idea

Construct a two-sided symmetric confidence interval for Δ:

- Approximate the ‘absolute’ sampling distribution of the studentized statistic using the bootstrap:

 $$L\left(\frac{|\hat{\Delta} - \Delta|}{s(\hat{\Delta})}\right) \approx L\left(\frac{|\hat{\Delta}^* - \hat{\Delta}|}{s(\hat{\Delta}^*)}\right)$$

 where $L(\cdot)$ denotes the law of a random variable

- Let $z^*_{|.|,\lambda}$ be a λ quantile of the r.h.s. distribution

- A two-sided symmetric confidence interval is given by:

 $$\hat{\Delta} \pm z^*_{|.|,1-\alpha} s(\hat{\Delta})$$

Reject H_0: $\Delta = 0$ at level α if 0 is not contained in the CI.
Details

Bootstrap world:

- Bootstrap data are generated using the circular block bootstrap
- This avoids the ‘edge effects’ of the moving blocks bootstrap, and so one can recenter simply using $\hat{\Delta}$
- There is a natural and easy way to compute $s(\hat{\Delta}^*)$, since the blocks are chosen in an i.i.d. fashion
Details

Bootstrap world:
- Bootstrap data are generated using the circular block bootstrap.
- This avoids the ‘edge effects’ of the moving blocks bootstrap, and so one can recenter simply using $\hat{\Delta}$.
- There is a natural and easy way to compute $s(\hat{\Delta}^*)$, since the blocks are chosen in an i.i.d. fashion.

Real world:
- Götze & Künsch (1996) propose the rectangular kernel for $s(\hat{\Delta})$ with bandwidth equal to the bootstrap block size.
- However, we use the prewhitened QS kernel with a data-dependent choice of block size instead.
Circular block bootstrap:

- Resample size-b blocks of observed excess return pairs
- Typical block: $\{(r_{ti}, r_{tn})', \ldots, (r_{(t+b-1)i}, r_{(t+b-1)n})'\}$
- Last block: $\{(r_{Ti}, r_{Tn})', (r_{1i}, r_{2n})', \ldots, (r_{(b-1)i}, r_{(b-1)n})'\}$
Circular block bootstrap:

- Resample size-b blocks of observed excess return pairs
- Typical block: $\{(r_{ti}, r_{tn})', \ldots, (r_{(t+b-1)i}, r_{(t+b-1)n})'\}$
- Last block: $\{(r_{Ti}, r_{Tn})', (r_{1i}, r_{2n})' \ldots, (r_{(b-1)i}, r_{(b-1)n})'\}$

Corresponding natural standard error, where $l = \lfloor n/b \rfloor$:

$$y_t^* = (r_{ti}^* - \hat{\mu}_i^*, r_{tn}^* - \hat{\mu}_n^*, r_{ti}^* - \hat{\gamma}_i^*, r_{tn}^* - \hat{\gamma}_n^*)' \quad t = 1, \ldots, T$$

$$\zeta_j = \frac{1}{\sqrt{b}} \sum_{t=1}^{b} y_{(j-1)b+t}^* \quad t = 1, \ldots, l$$

$$\hat{\Psi}^* = \frac{1}{l} \sum_{j=1}^{l} \zeta_j \zeta_j' \quad \text{and} \quad s(\hat{\Delta}^*) = \sqrt{\frac{\nabla'f(\hat{\nu}^*)\hat{\Psi}^*\nabla f(\hat{\nu}^*)}{T}}$$
Choice of the Block Size

Problem:

- A block bootstrap method uses a block size b
- This choice can be rather crucial for applications
Choice of the Block Size

Problem:
- A block bootstrap method uses a block size b
- This choice can be rather crucial for applications

Solution via a *Calibration Method*:
- Fit an unrestricted DGP to the observed data
- Suggestion: VAR model with bootstrapping the residuals (use the stationary bootstrap here)
- Simulating from this DGP, construct a CI for observed $\hat{\Delta}$
- Do this for a variety of candidate block sizes b
- Find the block size \tilde{b} that yields simulated confidence level closest to the nominal level $1 - \alpha$
Two Remarks

Remark:
- Vinod & Morey (1999) discuss bootstrap inference for Δ
- However, they use the i.i.d. bootstrap of Efron
- Also, they studentize in the wrong way
Two Remarks

Remark:
- Vinod & Morey (1999) discuss bootstrap inference for Δ
- However, they use the i.i.d. bootstrap of Efron
- Also, they studentize in the wrong way

Remark:
- Scherer (2004) discusses bootstrap inference for Sh
- He does not use a studentized bootstrap
- He proposes a double bootstrap for i.i.d. data
- But not for time series data (where an AR model is used)
Outline

1. The Problem

2. Solutions
 • HAC Inference
 • Bootstrap Inference

3. Simulations

4. Empirical Applications

5. Conclusions
Set-Up

DGPs:

1. Bivariate i.i.d. with $\rho = 0.5$
2. Bivariate GARCH(1,1)
3. Bivariate VAR(1) with $\rho = 0.5$ and $\phi = 0.2$
 - Innovations are either $N(0,1)$ oder standardized t_6
 - $T = 120$
Set-Up

DGPs:

1. Bivariate i.i.d. with $\rho = 0.5$
2. Bivariate GARCH(1,1)
3. Bivariate VAR(1) with $\rho = 0.5$ and $\phi = 0.2$
 - Innovations are either $N(0,1)$ oder standardized t_6
 - $T = 120$

Methods:

- HAC with QS kernel
- HAC with prewhitened QS kernel
- Studentized bootstrap
Set-Up

DGPs:
1. Bivariate i.i.d. with $\rho = 0.5$
2. Bivariate GARCH(1,1)
3. Bivariate VAR(1) with $\rho = 0.5$ and $\phi = 0.2$
 - Innovations are either $N(0,1)$ oder standardized t_6
 - $T = 120$

Methods:
- HAC with QS kernel
- HAC with prewhitened QS kernel
- Studentized bootstrap

Common goal:
- Test $H_0: \Delta = 0$ at nominal level $\alpha = 5\%$.

Empirical rejection probabilities in percent:

<table>
<thead>
<tr>
<th>DGP</th>
<th>JKM</th>
<th>HAC</th>
<th>HAC<sub>PW</sub></th>
<th>Boot-TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal-IID</td>
<td>5.0</td>
<td>5.3</td>
<td>5.4</td>
<td>4.8</td>
</tr>
<tr>
<td>t<sub>6</sub>-IID</td>
<td>10.7</td>
<td>6.7</td>
<td>6.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Normal-GARCH</td>
<td>7.2</td>
<td>7.1</td>
<td>7.2</td>
<td>5.5</td>
</tr>
<tr>
<td>t<sub>6</sub>-GARCH</td>
<td>7.4</td>
<td>7.7</td>
<td>7.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Normal-VAR</td>
<td>9.5</td>
<td>6.9</td>
<td>6.1</td>
<td>5.0</td>
</tr>
<tr>
<td>t<sub>6</sub>-VAR</td>
<td>14.5</td>
<td>7.9</td>
<td>7.3</td>
<td>5.1</td>
</tr>
</tbody>
</table>
Outline

1. The Problem
2. Solutions
 - HAC Inference
 - Bootstrap Inference
3. Simulations
4. Empirical Applications
5. Conclusions
Data

(1) Mutual funds:
- Fidelity, a ‘large blend’ fund
- Fidelity Aggressive Growth, a ‘mid-cap growth’ fund
- Data obtained from Yahoo! Finance

(2) Hedge funds:
- Coast Enhanced Income
- JMG Capital Partners
- Data obtained from CISDM database

In both cases:
- Return period: 01/94–12/03 $\implies T = 120$
- Use log returns in excess of the risk-free rate
- Compute p-values for $H_0: \Delta = 0$
Summary Sample Statistics

Excess returns are in percentages; sample statistics are not annualized:

- \bar{r} = average excess return
- s = standard deviation of excess returns
- $\hat{S}h$ = Sharpe ratio
- $\hat{\phi}$ = first-order autocorrelation

<table>
<thead>
<tr>
<th>Fund</th>
<th>\bar{r}</th>
<th>s</th>
<th>$\hat{S}h$</th>
<th>$\hat{\phi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fidelity</td>
<td>0.511</td>
<td>4.760</td>
<td>0.108</td>
<td>-0.010</td>
</tr>
<tr>
<td>Fidelity Agressive Growth</td>
<td>0.098</td>
<td>9.161</td>
<td>0.011</td>
<td>0.090</td>
</tr>
<tr>
<td>Coast Enhanced Income</td>
<td>0.245</td>
<td>0.168</td>
<td>1.461</td>
<td>0.152</td>
</tr>
<tr>
<td>JMG Capital Partners</td>
<td>1.228</td>
<td>1.211</td>
<td>1.014</td>
<td>0.435</td>
</tr>
</tbody>
</table>
p-Values

<table>
<thead>
<tr>
<th>Data</th>
<th>JKM</th>
<th>HAC</th>
<th>HAC$_{PW}$</th>
<th>Boot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutual funds</td>
<td>3.9</td>
<td>6.3</td>
<td>6.7</td>
<td>10.2</td>
</tr>
<tr>
<td>Hedge funds</td>
<td>1.0</td>
<td>14.7</td>
<td>25.4</td>
<td>29.4</td>
</tr>
</tbody>
</table>
Outline

1. The Problem

2. Solutions
 - HAC Inference
 - Bootstrap Inference

3. Simulations

4. Empirical Applications

5. Conclusions
Conclusions

Findings:

- The test of JK (1981) and Memmel (2003) shouldn’t be used.
- HAC inference is consistent, but can be somewhat liberal in finite samples (of sizes typical in applications).
- Bootstrap inference is the most reliable one.

Furthermore:

Free programming code for HAC and bootstrap inference is available on the website of the second author. HAC and bootstrap inference can be modified for alternative performance measures, such as:

- Refined Sharpe ratios
- Jensen’s alpha
- Treynor ratio
- Etc.
Conclusions

Findings:
- The test of JK (1981) and Memmel (2003) shouldn’t be used
- HAC inference is consistent, but can be somewhat liberal in finite samples (of sizes typical in applications)
- Bootstrap inference is the most reliable one

Furthermore:
- Free programming code for HAC and bootstrap inference is available on the website of the second author
- HAC and bootstrap inference can be modified for alternative performance measures, such as:
 - Refined Sharpe ratios
 - Jensen’s alpha
 - Treynor ratio
 - Etc.

